Skip to main content

Advertisement

Log in

Structure and Mechanical Properties of Steel in the Process “Pressing–Drawing”

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Grain structure and mechanical properties of steel A570 GR36 alloy subjected to four passes via combined “pressing–drawing” process at room temperature were investigated. In the “pressing–drawing” process, the structure of the wire is significantly reduced to ultrafine-grained state; so in the steel of grade A570 GR36, the average grain size of 12 microns after deformation was reduced up to 20 times (0.6 microns). The values of tensile strength and yield strength increased after four passes from 380 to 740 MPa and from 220 to 680 MPa, respectively. The contraction changed from 63 to 55%, but the change was not as significant as under the classic drawing. The four-pass combined “pressing–drawing” process is an effective way to form UFG structure and improved mechanical properties in steel A570 GR36 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.V. Chukin, M.A.Poljakova, and D.G. Emaleeva, Деформационное наноструктурирование проволок (Strain nanostructuring wire) (Magnitogorsk, 2012), p. 57

  2. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45, p 103–189

    Article  Google Scholar 

  3. X. Zhao, N. Chen, and N. Zhao, Numerical Simulation of Equal Channel Angular Pressing for Multi-Pass in Different Routes, Appl. Mech. Mater., 2012, 268–270, p 373–377

    Article  Google Scholar 

  4. I.E. Volokitina and G.G. Kurapov, Effect of Initial Structural State on Formation of Structure and Mechanical Properties of Steels Under ECAP, Met. Sci. Heat Treat., 2018, 59, p 786–792

    Article  Google Scholar 

  5. D. Orlov, G. Raab, T.T. Lamark, M. Popov, and Y. Estrin, Improvement of Mechanical Properties of Magnesium Alloy ZK60 by Integrated Extrusion and Equal Channel Angular Pressing, Acta Mater., 2011, 59, p 375–385

    Article  Google Scholar 

  6. A.B. Naizabekov, S.N. Lezhnev, and I.E. Volokitina, Change in Copper Microstructure and Mechanical Properties with Deformation in an Equal Channel Stepped Die, Met. Sci. Heat Treat., 2015, 57(5–6), p 254–260

    Article  Google Scholar 

  7. S. Wang, W. Liang, Yu Wang, L. Bian, and K. Chen, A Modified Die for Equal Channel Angular Pressing, J. Mater. Process. Technol., 2009, 209, p 3182–3186

    Article  Google Scholar 

  8. M. Jahedi, M. Knezevic, and M.H. Paydar, High-Pressure Doublem Torsion as Severe Plastic Deformation Process: Experimental Procedure and Finite Element Modeling, J. Mater. Eng. Perform., 2015, 24(4), p 1471–1482

    Article  Google Scholar 

  9. M. Kawasakia, Z. Horitab, and T.G. Langdona, Microstructural Evolution in High Purity Aluminum Processed by ECAP, Mater. Sci. Eng. A, 2009, 524(1–2), p 143–150

    Article  Google Scholar 

  10. M. Vaseghi, H.S. Kim, A.K. Taheri, and A. Momeni, Inhomogeneity Through Warm Equal Channel Angular Pressing, J. Mater. Eng. Perform., 2013, 22(6), p 1666–1671

    Article  Google Scholar 

  11. V.M. Segal, A.E. Reznikov, A.E. Drobyshevskiy, and V.I. Kopylov, Plastic Working of Metals by Simple Shear, Russ. Metall., 1981, 1, p 971–974

    Google Scholar 

  12. V.M. Segal, Engineering and Commercialization of Equal Channel Angular Extrusion (ECAE), Mater. Sci. Eng., A, 2004, 386, p 269–276

    Article  Google Scholar 

  13. S. Lezhnev, A. Naizabekov, and I. Volokitina, Features of Change of the Structure and Mechanical Properties of Steel at ECAP Depending on the Initial State, J. Chem. Technol. Metall., 2017, 52(4), p 626–635

    Google Scholar 

  14. G. Raab, R. Valiev, T. Lowe, and Y. Zhu, Continuous Processing of Ultrafine Grained A1 by ECAP-Conform, Mater. Sci. Eng., 2004, 382, p 30–34

    Article  Google Scholar 

  15. G.I. Raab, E.I. Fakhretdinova, R.Z. Valiev, L.P. Trifonenkov, and V.F. Frolov, Computer Study of the Effect of Tooling Geometry on Deformation Parameters in the Plastic Shaping of Aluminum Wire Rod by Multi-ECAP-Conform, Metallurgist, 2016, 59(11–12), p 1007–1014

    Article  Google Scholar 

  16. M.V. Chukin, M.A. Poljakova, E.M. Golubchik, V.P Rudako, S.E. Noskov, and A.E. Gulin, Method of Making Ultrafine Semis by Drawing with Twisting. Patent of RF, No. 2467816 (2012)

  17. G.I. Raab and A.G.Raab, Device for Drawing and Production of Ultrafine-Grained Semi-Finished Products. Patent of RF No. 2347632 (2007)

  18. Y.G. Jin, I.H. Son, S.H. Kang, and Y.T. Im, Three-Dimensional Finite Element Analysis of Multi-pass Equal-Channel Angular Extrusion of Aluminum AA1050 with Split Dies, Mater. Sci. Eng., A, 2009, 503, p 152–155

    Article  Google Scholar 

  19. S. Lezhnev, A.B. Naizabekov, E. Panin, I. Volokitina, and T. Koinov, The Effect of Preliminary and Final Heat Treatment in Course of the Combined “Rolling-Pressing” Process Realization on Microstructure Evolution of Copper, J. Chem. Technol. Metall., 2016, 51, p 315–321

    Google Scholar 

  20. K. Muszka, M. Wielgus, K. Doniec, and M. Stefanska-Kadziela, Influence of Strain Changes on Microstructure Inhomogeneity and Mechanical Behavior of Wire Drawing Products, Mater. Sci. Forum, 2010, 654, p 314–317

    Article  Google Scholar 

  21. M.V. Chukin, D.G. Emaleeva, M.P. Baryshnikov, and M.A. Poljakova, Method of Producing Long Round Billets with Ultrafine Granular Structure. Patent of RF No. 2446027 (2012)

  22. I. Volokitina and A. Volokitin, Evolution of the Microstructure and Mechanical Properties of Copper During the Pressing–Drawing Process, Phys. Met. Metallogr., 2018, 119, p 917–921

    Article  Google Scholar 

  23. S. Lezhnev, A. Naizabekov, A. Volokitin, and I. Volokitina, New Combined Process Pressing–Drawing and Impact on Properties of Deformable Aluminum Wire, Proc. Eng., 2014, 81, p 1505–1510

    Article  Google Scholar 

  24. P. Basavaraj, U. Chakkingal, and T.S. Prasanna Kumar, Study of Channel Angle Influence on Material Flow and Strain Inhomogeneity in Equal Channel Angular Pressing Using 3D Finite Element Simulation, J. Mater. Process. Technol., 2009, 209, p 89–95

    Article  Google Scholar 

  25. User’s Manual, DEFORM™ Integrated 2D-3D Version 10.2.1. (Columbus, Ohio, 2012)

  26. P.M. Dixit and U.S. Dixit, Modeling of Metal Forming and Machining Processes by Finite Element and Soft Computing Methods, Springer, London, 2008

    Google Scholar 

  27. H. Yada, N. Matsuzu, K. Nakajima, K. Watanabe, and H. Tokita, Strength and Structural-Changes Under High Strain-Rate Hot Deformation of C-Steels, Trans. ISIJ, 1983, 23, p 100–109

    Article  Google Scholar 

  28. S. Kobayashi, S. Oh, and T. Altan, Metal Forming and the Finite-Element Method, Oxford University Press, New York, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Volokitina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naizabekov, A., Volokitina, I., Volokitin, A. et al. Structure and Mechanical Properties of Steel in the Process “Pressing–Drawing”. J. of Materi Eng and Perform 28, 1762–1771 (2019). https://doi.org/10.1007/s11665-019-3880-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-3880-6

Keywords

Navigation