Skip to main content

Advertisement

Log in

Characterization of Hot Workability of 5052 Aluminum Alloy Based on Activation Energy-Processing Map

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the design of hot forming processes for aluminum alloys, hot processing maps are usually used as a powerful tool for processing parameters optimizations. Although the stability of deformation is considered in conventional hot processing (CHP) maps, the difficulty of deformation, i.e., whether deformation is easy to occur, is not taken into account. Therefore, it is difficult for CHP maps to efficiently and accurately obtain the optimal processing parameters and achieve satisfying hot workability. Hence, in this study, thermal compression tests were performed to investigate the hot forming behavior of 5052 aluminum alloy in the deformation temperature range of 553-733 K and strain rate range of 0.001-1 s−1. We proposed an activation energy-processing (AEP) map by coupling the CHP map and the activation energy value, and thereby applied it to evaluate the hot workability of 5052 aluminum alloy. In CHP maps, the region with the highest power dissipation efficiency is generally considered to be the best processing region. However, the AEP map shows that materials with satisfying hot workability not only depends on high power dissipation efficiency, but also on low activation energy values. At the strain of 0.7, the optimal hot processing region predicted by the CHP map lies in the temperature range of 583-673 K and strain rate range of 0.001-0.1 s−1, but that predicted by AEP map locates in the temperature range of 643-733 K and strain rate range of 0.001-0.1 s−1. Microstructure characterization implies that the optimal processing region predicted by the CHP map presents necklace-like structures, which are non-uniform and unbeneficial for deformation, while that predicted by the AEP map consists of fine, uniform and equiaxed grains. Thus, it is implied that the processing regions predicted by the AEP map are more suitable for forming, i.e., the reasonability of the AEP map is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.K. Lin, S.H. Wang, R.Y. Chen, T.S. Hsieh, L. Tsai, and C.C. Chiang, The Effect of Heat Treatment on the Sensitized Corrosion of the 5383-H116 Al-Mg Alloy, Materials, 2017, 10, p 275

    Article  Google Scholar 

  2. F.J. Zhu, H.Y. Wu, M.C. Lin, S. Lee, and W.R. Wang, Hot Workability Analysis and Development of a Processing Map for Homogenized 6069 Al Alloy Cast Ingot, J. Mater. Eng. Perform., 2015, 24, p 2051–2059

    Article  CAS  Google Scholar 

  3. C.R. Anoop, A. Prakash, S.K. Giri, S.V.S. Narayana Murty, and I. Samajdar, Optimization of Hot Workability and Microstructure Control in a 12Cr-10Ni Precipitation Hardenable Stainless Steel: An Approach Using Processing Maps, Mater. Charact., 2018, 141, p 97–107

    Article  CAS  Google Scholar 

  4. Z. Su, L. Wan, C. Sun, Y. Cai, and D. Yang, Hot Deformation Behavior of AZ80 Magnesium Alloy Towards Optimization of Its Hot Workability, Mater. Charact., 2016, 122, p 90–97

    Article  CAS  Google Scholar 

  5. C. Sun, Y. Xiang, Q. Zhou, D. Politis, Z. Sun, and M. Wang, Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel, Metals, 2016, 6, p 152

    Article  Google Scholar 

  6. S. Luo, D. Zhu, L. Hua, D. Qian, S. Yan, and F. Yu, Effects of Process Parameters on Deformation and Temperature Uniformity of Forged Ti-6Al-4V Turbine Blade, J. Mater. Eng. Perform., 2016, 25, p 4824–4836

    Article  CAS  Google Scholar 

  7. B.J. Lv, F. Guo, Q.L. Che, Y. Xu, N. Cui, and Y.L. Guan, A New Method for Optimizing Hot Processing Parameters of Mg-6.0Zn-0.5Mn-0.5Er Alloy Based on Kinetic Model of Dynamic Recrystallization and Processing Map, J. Mater. Eng. Perform., 2018, 27, p 3773–3782

    Article  CAS  Google Scholar 

  8. X. Zhou, R.R. Liu, H.T. Zhou, and W.X. Jiang, A Revisited Study of the Processing Map and Optimized Workability of AZ61 Magnesium Alloy, J. Mater. Eng. Perform., 2017, 26, p 2423–2429

    Article  CAS  Google Scholar 

  9. H.E. Hu and X.Y. Wang, Superplastic Deformation Behavior and Hot-Processing Map of the TiNp/2014 Al Composite, Met. Mater. Int., 2016, 22, p 41–49

    Article  CAS  Google Scholar 

  10. J.S. Jin, X.Y. Wang, H.E. Hu, and J.C. Xia, High-Temperature Deformation Behavior and Processing Map of 7050 Aluminum Alloy, Met. Mater. Int., 2012, 18, p 69–75

    Article  CAS  Google Scholar 

  11. H. Sun, Y. Zhang, A.A. Volinsky, B. Wang, B. Tian, K. Song, Z. Chai, and Y. Liu, Effects of Ag Addition on Hot Deformation Behavior of Cu-Ni-Si Alloys, Adv. Eng. Mater., 2017, 19, p 1600607

    Article  Google Scholar 

  12. Q. Zhang, Y. Lin, H. Chi, J. Chang, and G. Wu, Quasi-static and Dynamic Compression Behavior of Glass Cenospheres/5A03 Syntactic Foam and its Sandwich Structure, Compos. Struct., 2018, 183, p 499–509

    Article  Google Scholar 

  13. J. Luo, M. Li, H. Li, and W. Yu, Effect of the Strain on the Deformation Behavior of Isothermally Compressed Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2009, 505, p 88–95

    Article  Google Scholar 

  14. Y. Sun, Z. Cao, Z. Wan, L. Hu, W. Ye, N. Li, and C. Fan, 3D Processing Map and Hot Deformation Behavior of 6A02 Aluminum Alloy, J. Alloys Compd., 2018, 742, p 356–368

    Article  CAS  Google Scholar 

  15. A.C. Kaya, P. Zaslansky, M. Ipekoglu, and C. Fleck, Strain Hardening Reduces Energy Absorption Efficiency of Austenitic Stainless Steel Foams While Porosity Does Not, Mater. Des., 2018, 143, p 297–308

    Article  CAS  Google Scholar 

  16. J. Luo, L. Li, and M.Q. Li, The Flow Behavior and Processing Maps During the Isothermal Compression of Ti17 Alloy, Mater. Sci. Eng. A, 2014, 606, p 165–174

    Article  CAS  Google Scholar 

  17. N. Srinivasan and Y.V.R.K. Prasad, Hot Working Characteristics of Nimommic 75, 80A and 90 Superalloys A Comparison Using Processing Maps, J. Mater. Process. Technol., 1995, 51, p 171–192

    Article  Google Scholar 

  18. S.V.S.N. Murty and B.N. Rao, On the Development of Instability Criteria During Hotworking with Reference to IN718, Mater. Sci. Eng. A, 1998, 254, p 76–82

    Article  Google Scholar 

  19. L. Xu, L. Chen, G.J. Chen, and M.Q. Wang, Hot Deformation Behavior and Microstructure Analysis of 25Cr3Mo3NiNb Steel During Hot Compression Tests, Vacuum, 2018, 147, p 8–17

    Article  CAS  Google Scholar 

  20. S. Wang, L.G. Hou, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, Characterization of Hot Workability in AA 7050 Aluminum Alloy Using Activation Energy and 3-D Processing Map, J. Mater. Process. Technol., 2015, 225, p 110–121

    Article  CAS  Google Scholar 

  21. Z. Mingjie, L. Fuguo, W. Shuyun, and L. Chenyi, Characterization of Hot Deformation Behavior of a P/M Nickel-Base Superalloy Using Processing Map and Activation Energy, Mater. Sci. Eng. A, 2010, 527, p 6771–6779

    Article  Google Scholar 

  22. S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang, and L.Z. Zhuang, Identification of the Threshold Stress and True Activation Energy for Characterizing the Deformation Mechanisms During Hot Working, Mater. Des., 2017, 113, p 27–36

    Article  Google Scholar 

  23. Z. Yang, Y. Li, Y. Li, F. Zhang, and M. Zhang, Constitutive Modeling for Flow Behavior of Medium-Carbon Bainitic Steel and Its Processing Maps, J. Mater. Eng. Perform., 2016, 25, p 5030–5039

    Article  CAS  Google Scholar 

  24. J.Q. Zhang, H.S. Di, H.T. Wang, K. Mao, T.J. Ma, and Y. Cao, Hot Deformation Behavior of Ti-15-3 Titanium Alloy a Study Using Processing Maps, Activation Energy Map, and Zener-Hollomon Parameter Map, J. Mater. Sci., 2012, 47, p 4000–4011

    Article  CAS  Google Scholar 

  25. Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759

    Article  CAS  Google Scholar 

  26. F.J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, 2nd ed., Elsevier, Oxford, 2004

    Google Scholar 

  27. X. Wang, Z. Liu, and H. Luo, Hot Deformation Characterization of Ultrahigh Strength Stainless Steel Through Processing Maps Generated Using Different Instability Criteria, Mater. Charact., 2017, 131, p 480–491

    Article  CAS  Google Scholar 

  28. Y. Zhang, H. Sun, A.A. Volinsky, B. Wang, B. Tian, Z. Chai, Y. Liu, and K. Song, Small Y Addition Effects on Hot Deformation Behavior of Copper-Matrix Alloys, Adv. Eng. Mater., 2017, 19, p 1700197

    Article  Google Scholar 

  29. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti-6Al-4V with an Equiaxed Microstructure Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284, p 184–194

    Article  Google Scholar 

  30. Z.B. Xiao, Y.C. Huang, and Y. Liu, Plastic Deformation Behavior and Processing Maps of 35CrMo Steel, J. Mater. Eng. Perform., 2016, 25, p 1219–1227

    Article  CAS  Google Scholar 

  31. R. Łyszkowski and J. Bystrzycki, Hot Deformation and Processing Maps of a Fe–Al Intermetallic Alloy, Mater. Charact., 2014, 96, p 196–205

    Article  Google Scholar 

  32. K.P. Rao, Y.V.R.K. Prasad, and K. Suresh, Hot Working Behavior and Processing Map of a γ-TiAl Alloy Synthesized by Powder Metallurgy, Mater. Des., 2011, 32, p 4874–4881

    Article  CAS  Google Scholar 

  33. S. Chen, D. Fu, H. Luo, Y. Wang, J. Teng, and H. Zhang, Hot Workability of PM 8009Al/Al2O3 Particle-Reinforced Composite Characterized Using Processing Maps, Vacuum, 2018, 149, p 297–305

    Article  CAS  Google Scholar 

  34. J. Luo, M.Q. Li, and B. Wu, The Correlation Between Flow Behavior and Microstructural Evolution of 7050 Aluminum Alloy, Mater. Sci. Eng. A, 2011, 530, p 559–564

    Article  CAS  Google Scholar 

  35. L. Wang, F. Liu, J.J. Cheng, Q. Zuo, and C.F. Chen, Hot Deformation Characteristics and Processing Map Analysis for Nickel-Based Corrosion Resistant Alloy, J. Alloys Compd., 2015, 623, p 69–78

    Article  CAS  Google Scholar 

  36. B. Shen, L. Deng, and X. Wang, A New Dynamic Recrystallisation Model of an Extruded Al-Cu-Li Alloy During High-Temperature Deformation, Mater. Sci. Eng. A, 2015, 625, p 288–295

    Article  CAS  Google Scholar 

  37. T. Sakai, H. Miura, A. Goloborodko, and O. Sitdikov, Continuous Dynamic Recrystallization During the Transient Severe Deformation of Aluminum Alloy 7475, Acta Mater., 2009, 57, p 153–162

    Article  CAS  Google Scholar 

  38. Z.C. Sun, L.S. Zheng, and H. Yang, Softening Mechanism and Microstructure Evolution of As-Extruded 7075 Aluminum Alloy During Hot Deformation, Mater. Charact., 2014, 90, p 71–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Found for Distinguished Young Scholars of China (Grant No.: 51725504) and the Key Program of National Natural Science Foundation of China (Grant No. 51435007). The authors are also grateful for the technical assistance from the Analytical and Testing Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

XW and PZ conceived and designed the experiments; LD performed the experiments; PG contributed reagents/materials/analysis tools; PZ wrote the paper and analyzed the data; MZ and XW reviewed and revised the paper.

Corresponding author

Correspondence to Xin-yun Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Deng, L., Zhang, M. et al. Characterization of Hot Workability of 5052 Aluminum Alloy Based on Activation Energy-Processing Map. J. of Materi Eng and Perform 28, 6209–6218 (2019). https://doi.org/10.1007/s11665-019-04367-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04367-7

Keywords

Navigation