Skip to main content
Log in

The Evolution of Deformation-Induced Carbides during Divorced Eutectoid Transformation in GCr15 Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A series of rolling experiments were carried out using GCr15 steel to investigate the effect of initial microstructure on the spheroidizing process, and especially the effect of deformation-induced carbides (DIC) on the divorced eutectoid transformation (DET). The results indicated that the existence of DIC was beneficial to the spheroidizing process, the optimal initial microstructure for DET was lamellar pearlite, and DIC precipitated at grain boundaries. The average thickness of the cementite lamella and the size of DIC decreased with a decrease in rolling temperature in the critical temperature region. When the specimen was rolled at 1053 K, a small amount of DIC of size ~ 1 μm precipitated at grain boundaries. In contrast, the amount of DIC was increased when the rolling temperature was decreased to 1023 K, whereas the size of DIC was reduced to ~ 0.5 μm. Interrupted quenching experiments indicated that DIC (M7C3) were transformed to M3C during the process of partial austenitization, and the evolution of spheroidization was influenced by the variation in the initial microstructure. For the specimens rolled at 1023 K, only ~ 60 min was needed to achieve the dissolution of DIC, which was the minimum, and the total time needed to achieve spheroidization was reduced to ~ 90 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Monia, A. Varshney, S. Gouthama, and S. Sangal, Effect of Intercritical Temperature on the Structure Property Correlation of Multiphase High-C Spheroidized Steel, J. Mater. Eng. Perform., 2016, 25(2), p 623–634 (in India)

    Article  CAS  Google Scholar 

  2. H.K.D.H. Bhadeshia, Steels for Bearings, Prog. Mater. Sci., 2012, 57(2), p 268–435 (in UK)

    Article  CAS  Google Scholar 

  3. K. Han, D.V. Edmonds, and G.D.W. Smith, Optimization of Mechanical Properties of High-Carbon Pearlitic Steels with Si and V Additions, Metall. Mater. Trans. A, 2011, 32(6), p 1313–1324 (in USA)

    Article  CAS  Google Scholar 

  4. M. Carsi, O.A. Ruano, F. Peñalba, and O.D. Sherby, High Strain Rate Torsional Behavior of an Ultrahigh Carbon Steel (1.8 Pct C-1.6 Pct Al) at Elevated Temperature, Metall. Mater. Trans. A, 1997, 28(9), p 1913–1920 (in Spain)

    Article  Google Scholar 

  5. N.V. Luzginova, L. Zhao, and J. Sietsma, The Cementite Spheroidization Process in High-Carbon Steels with Different Chromium Contents, Metall. Mater. Trans. A, 2008, 39(3), p 513–521 (in Netherlands)

    Article  CAS  Google Scholar 

  6. Z.X. Li, C.S. Li, J. Zhang, B.Z. Li, and X.D. Pang, Microstructure of Hot Rolled 1.0C-1.5Cr Bearing Steel and Subsequent Spheroidization Annealing, Metall. Mater. Trans. A, 2016, 47(7), p 3607–3621 (in China)

    Article  CAS  Google Scholar 

  7. F.G. Caballero, C. Capdevila, and C.G.D. Andrés, Influence of Scale Parameters of Pearlite on the Kinetics of Anisothermal Pearlite-to-Austenite Transformation in a Eutectoid Steel, Scr. Mater., 2000, 42(12), p 1159–1165 (in USA)

    Article  CAS  Google Scholar 

  8. Y.K. Sun and D. Wu, Effect of Ultra-Fast Cooling on Microstructure of Large Section Bars of Bearing Steel, J. Iron Steel Res. Int., 2009, 16(5), p 61–65 (in China)

    Article  CAS  Google Scholar 

  9. S.J. Yao, L.X. Du, and G.D. Wang, Microstructure of Nb-Bearing Pipeline Steel with Improved Property Applying Ultrafast Cooling Process, Steel Res. Int., 2014, 85(1), p 60–66 (in China)

    Article  CAS  Google Scholar 

  10. M. Wang, F. Zhang, and Z. Yang, Effect of High-Temperature Deformation and Cooling Process on the Microstructure and Mechanical Properties of an Ultrahigh-Strength Pearlite Steel, Mater. Des., 2017, 114(2), p 102–110 (in USA)

    Article  CAS  Google Scholar 

  11. S.L. Zhang, X.J. Sun, and H. Dong, Effect of Deformation on the Evolution of Spheroidization for the Ultra-High Carbon Steel, Mater. Sci. Eng., A, 2006, 432(1), p 324–332 (in China)

    Article  CAS  Google Scholar 

  12. J. Arruabarrena, B. Lopze, and J.M. Rodriguez-Ibabe, Influence of Prior Warm Deformation on Cementite Spheroidization Process in a Low-Alloy Medium Carbon Steel, Metall. Mater. Trans. A, 2014, 45(3), p 1470–1484 (in Spain)

    Article  CAS  Google Scholar 

  13. Q.W. Chen, G.H. Zhu, S.M. Cao, and A.M. Zhao, Quick Spherodizing in GCr15 Steel by Mechanism of Divorced Eutectoid, Adv. Mater. Res., 2011, 295, p 515–519 (in China)

    Article  CAS  Google Scholar 

  14. J.J. Sun, F.L. Lian, H.J. Liu, T. Jiang, S.W. Guo, L.X. Du, and Y.N. Liu, Microstructure of Warm Rolling and Pearlitic Transformation of Ultrafine-Grained GCr15 Steel, Mater. Charact., 2014, 95, p 291–298 (in China)

    Article  CAS  Google Scholar 

  15. W. Song, P.P. Choi, G. Inden et al., On the Spheroidized Carbide Dissolution and Elemental Partitioning in High Carbon Bearing Steel 100Cr6, Metall. Mater. Trans. A, 2014, 45(2), p 595–606 (in USA)

    Article  CAS  Google Scholar 

  16. H.B. Yang and F.X. Zhu, Effect of Divorced Eutectoid Transformation Temperature on Behaviour of Cementite Growth in GCr15 Steel, Adv. Mater. Res., 2011, 194, p 296–300 (in China)

    Article  CAS  Google Scholar 

  17. W.T. Yu, J. Li, C.B. Shi et al., Effect of Spheroidizing Annealing on Microstructure and Mechanical Properties of High-Carbon Martensitic Stainless Steel 8Cr13MoV, J. Mater. Eng. Perform., 2016, 26(2), p 1–10 (in China)

    Google Scholar 

  18. X.M. Zhao, Y.K. Sun, and D. Wu, Controlled Cooling of GCr15 Bearing Steel After High Temperature Deformation, Mater. Sci. Technol., 2010, 18, p 216–220 (in China)

    CAS  Google Scholar 

  19. D.X. Han, L.X. Du, B. Zhang, and R.D.K. Misra, Effect of Deformation on Deformation-Induced Carbides and Spheroidization in Bearing Steel, J. Mater. Sci., 2019, 54(3), p 2612–2627 (in China)

    Article  CAS  Google Scholar 

  20. G.H. Zhu and G. Zheng, Directly Spheroidizing During Hot Deformation in GCr15 Steels, Front. Mater Sci., 2008, 2(1), p 72–75 (in China)

    Article  Google Scholar 

  21. Z.X. Li, C.S. Li, J. Zhang, B.Z. Li, and X.D. Pang, Microstructure of Hot Rolled 1.0C-1.5Cr Bearing Steel and Subsequent Spheroidization Anealing, Metall. Trans. A, 2016, 47(7), p 3607–3621 (in China)

    Article  CAS  Google Scholar 

  22. J.D. Verhoeven and E.D. Gibson, The Divorced Eutectoid Transformation in Steel, Metall. Mater. Trans. A, 1998, 29(4), p 1181–1189 (in USA)

    Article  Google Scholar 

  23. J.D. Verhoeven, The Role of the Divorced Eutectoid Transformation in the Spheroidization of 52100 Steel, Metall. Mater. Trans. A, 2000, 31(10), p 2431–2438 (in USA)

    Article  Google Scholar 

  24. Z.X. Li, C.S. Li, J.Y. Ren, and B.Z. Li, Design of Online Spheroidization Process for 1.0C-1.5Cr Bearing Steel and Microstructure Analysis, Metall. Mater. Trans. A, 2018, 49(5), p 1782–1794 (in China)

    Article  CAS  Google Scholar 

  25. W. Mullins and R.F. Sekerka, Mullins, Morphological Stability of a Particle Growing by Diffusion or Heat Flow, J. Appl. Phys., 1963, 34(2), p 323–329 (in USA)

    Article  CAS  Google Scholar 

  26. S.R. Coriell and R.L. Parker, Stability of the Shape of a Solid Cylinder Growing in a Diffusion Field, J. Appl. Phys., 2004, 36(2), p 632–637 (in USA)

    Article  Google Scholar 

  27. H. Li, H. Zhang, Z.F. Lv, and Z.F. Zhu, Cementite Dissolution Kinetics of High Carbon Chromium Steel during Intercritical Austenitization, J. Phase Equilib. Diffus., 2017, 38(4), p 543–551 (in China)

    Article  CAS  Google Scholar 

  28. D. Shtansky, K. Nakai, and Y. Ohmori, Decomposition of Martensite by Discontinuous-Like Precipitation Reaction in an Fe-17Cr-0.5C Alloy, Acta Mater., 2000, 48(4), p 969–983 (in Japan)

    Article  CAS  Google Scholar 

  29. A.M. Gokhale and R.T. Dehoff, Estimation of Nucleation Rate and Growth Rate from Time Dependence of Global Microstructural Properties during Phase Transformations, Metall. Trans. A, 1985, 16(4), p 559–564 (in India)

    Article  Google Scholar 

  30. J. Epp, H. Surm, O. Kessler, and T. Hirsch, In situ x-ray Phase Analysis and Computer Simulation of Carbide Dissolution of Ball Bearing Steel at Different Austenitizing Temperatures, Acta Mater., 2007, 55(17), p 5959–5967 (in Germany)

    Article  CAS  Google Scholar 

  31. Z.D. Li, G. Miyamoto, Z.G. Yang, and T. Furuhara, Nucleation of Austenite from Pearlitic Structure in an Fe-0.6C-1Cr Alloy, Scr. Mater., 2009, 60(7), p 485–488 (in Japan)

    Article  CAS  Google Scholar 

  32. J.Y. Chae, J.H. Jang, G. Zhang, K.H. Kim, J.S. Lee, H.K.D.H. Bhadeshia, and D.W. Suh, Dilatometric Analysis of Cementite Dissolution in Hypereutectoid Steels Containing Cr, Scr. Mater., 2011, 65(3), p 245–248 (in Korea)

    Article  CAS  Google Scholar 

  33. I.M. Lifshitz and V.V. Slyozov, The Kinetics of Precipitation from Supersaturated Solid Solutions, J. Phys. Chem. Solids, 1961, 19(1), p 35–50 (in USSR)

    Article  Google Scholar 

  34. R. Monzen and K. Kita, Ostwald Ripening of Spherical Fe Particles in Cu-Fe Alloys, Philos. Mag. Lett., 2002, 82(7), p 373–382 (in USA)

    Article  CAS  Google Scholar 

  35. K. Yang, J.S. Zhang, X.M. Zong, W. Liu, and C.X. Xu, Spheroidizing Behavior and Spheroidizing Kinetics of W-Phase during Solid-Solution Treatment in Mg-Zn-Y-Mn-(B) Alloys, Acta Metall. Sin-Engl., 2017, 30, p 464–469 (in China)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.D.K. Misra gratefully acknowledges continued collaboration with Northeastern University as an Honorary Professor by providing guidance to students in research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Xu Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, DX., Du, LX., Yao, CX. et al. The Evolution of Deformation-Induced Carbides during Divorced Eutectoid Transformation in GCr15 Steels. J. of Materi Eng and Perform 28, 5277–5288 (2019). https://doi.org/10.1007/s11665-019-04269-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04269-8

Keywords

Navigation