Skip to main content
Log in

Hot Corrosion Performance of Single-Crystal CMSX-4 and CMSX-486 Superalloys in the Mixture of Na2SO4-NaCl Melts

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A modification in the chemistry of single-crystal CMSX-4 to produce CMSX-486 superalloy has been reported in the literature to be accomplished without degradation in high-temperature mechanical performance. However, adequate attention has not yet been focussed on the hot corrosion response of the alloy considering its chemical composition modification. This paper reports for the first time that a considerable degradation in the hot corrosion resistance of CMSX-4 occurs by the modification of its chemistry. Corrosion tests at different salt concentrations and temperatures showed that the hot corrosion resistance of CMSX-486 is worse than the conventional CMSX-4 alloy. The difference in the corrosion resistance characteristics of the two alloys is attributable to the nature of the protective oxide layer formed on the materials during hot corrosion. Characterization using various advanced techniques revealed that the oxide layer formed on CMSX-486 consists of less amount of protective and coherent Al2O3 and Cr2O3 film than CMSX-4, and this is the reason for its poor hot corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Scholz, Y. Wang, S. Linn, C. Berger, and R. Znajda, Modelling of Mechanical Properties of CMSX-4, Mater. Sci. Eng. A, 2009, 510–511, p 278–283

    Article  Google Scholar 

  2. A. Sato, J.J. Moverare, M. Hasselqvist, and R.C. Reed, On the Mechanical Behavior of a New Nickel-Based Single Crystal Superalloys for Industrial Gas Turbines, Metall. Mater. Trans. A, 2012, 43(7), p 2302–2315

    Article  CAS  Google Scholar 

  3. T. Yeh, H. Chang, M. Wang, T. Yuan, and J. Kai, Corrosion of Alloy 617 in High Temperature Gas Environments, Nucl. Eng. Des., 2014, 271, p 257–261

    Article  CAS  Google Scholar 

  4. J.L. Liu, J. Meng, J.J. Yu, Y.Z. Zhou, and X.F. Sun, Influence of Solidification Conditions and Alloying Elements Re and Ti on Micropores Formed during Homogenization of Ni Base Single Crystal superalloy, J. Alloys Compd., 2018, 746, p 428–434

    Article  CAS  Google Scholar 

  5. A. Sengupta, S.K. Putatunda, L. Bartosiewicz, J. Hangas, P.J. Nailos, M. Peputapeck, and F.E. Alberts, Tensile Behavior of a New Single-Crystal Based Superalloy (CMSX-4) at Room and Elevated Temperatures, J. Mater. Eng. Perform., 1994, 3(1), p 73–81

    Article  CAS  Google Scholar 

  6. W. Wang, A. Kermanpur, P.D. Lee, and M. Mclean, Simulation of Dendritic Growth in the Platform Region of Single Crystal Superalloy Turbine Blades, J. Mater. Sci., 2003, 38(21), p 4385–4391

    Article  CAS  Google Scholar 

  7. K. Harris and J.B. Wahl, Improved Single Crystal Superalloys, CMSX-4 (SLS)[L + Y]. The Minerals, Metals & Materials Society, Superalloys, 2004, 2004, p 45–52

    Article  Google Scholar 

  8. M. Li, X. Sun, W. Hu, H. Guan, and S. Chen, Hot Corrosion of a Single crystal Ni-Base Superalloy by Na-Salts at 900 °C, Oxid. Met., 2006, 65(1–2), p 137–150

    Article  CAS  Google Scholar 

  9. P. Caron and O. Lavigne, Recent Studies at Onera on Superalloys for single Crystal Turbine Blades, J. Aerosp. Lab., 2011, 3, p 1–14

    Google Scholar 

  10. M. Qjao and C. Zhou, Hot Corrosion Behaviour of Co modified NiAl Coating on Nickel Base Superalloys, Corros. Sci., 2012, 63, p 239–245

    Article  Google Scholar 

  11. F. Weng, H. Yu, K. Wan, and C. Chen, The influence of Nb on Hot Corrosion Behavior of Ni-based Superalloy at 800 °C in a Mixture of Na2SO4-NaCl, J. Mater. Res., 2014, 29(21), p 2596–2603

    Article  CAS  Google Scholar 

  12. G.A. Kool, Current and Future Materials in Advanced Gas Turbine Engines, J. Therm. Spray Technol., 1996, 5(1), p 31–34

    Article  CAS  Google Scholar 

  13. T. Hino, T. Kobayashi, Y. Koizumi, H. Harada, and T. Yamagata, Development of a New Single Crystal Superalloy for Industrial Gas Turbines, Superalloys, 2000, 2000, p 729–736

    Google Scholar 

  14. J. Summer, A. Encinas-Oropesa, N.J. Simms, and J.R. Nicholls, Type II, Hot Corrosion: Kinetics Studies of CMSX-4, Oxid. Met., 2013, 80, p 553–563

    Article  Google Scholar 

  15. S. Tian, X. Ding, Z. Guo, J. Xie, Y. Xue, and D. Shu, Damage and Fracture Mechanism of a Nickel-Based Single Crystal Superalloy during Creep at Moderate Temperature, Mater. Sci. Eng. A, 2014, 594, p 7–16

    Article  CAS  Google Scholar 

  16. Z. Huda, T. Zaharinie, and H.A. Al-Ansary, Enhancing Power Output and Profitability through Energy-Efficiency Techniques and Advanced Materials in Today’s Industrial gas turbines, Int. J. Mech. Mater. Eng., 2014, 9(2), p 39–46

    Google Scholar 

  17. N. D’Souza, J. Kelleher, C. Qiu, S. Zhang, S. Gardner, R.E. Jones, D. Pudman, and C. Panwisawas, The Role of Stress Relaxation and Creep during High Temperature Deformation in Ni-Base Single Crystal Superalloys-Implications to Strain Build-Up during Directional Solidification, Acta Mater., 2016, 106, p 322–332

    Article  Google Scholar 

  18. Q. Li, J. Shen, L. Qin, and S. Gao, Investigation on Freckles in Directionally Solidified CMSX-4 Superalloy Specimens with Abrupt Cross Section Variation, J. Alloys Compd., 2017, 691, p 997–1004

    Article  CAS  Google Scholar 

  19. Y. Aoki, M. Arai, K. Chikugo, Y. Koizumi and H. Harada, Mechanical Properties and Castability of a 4th Generation Ni-Base Single Crystal Superalloy, in TMS-138 Proceeding of the International Gas Turbine Congress, 2003, pp. 1–6.

  20. J.Z. Yi, C.J. Torbet, Q. Feng, T.M. Polloct, and J.W. Jones, Ultrasonic Fatigue of a Single Crystal Ni-Base Super Alloy at 1000 °C, Mater. Sci. Eng. A, 2007, 443(1–2), p 142–149

    Article  Google Scholar 

  21. C.J. Pierce, A.N. Palazotto, and A.H. Rosenberger, Creep and Fatigue Interaction in the PWA 1484 Single Crystal Nickel-Base Superalloy, Mater. Sci. Eng. A, 2010, 527(29), p 7484–7489

    Article  Google Scholar 

  22. K.P.L. Fullagar, R.W. Broomfield, M. Hulands, K. Harris, G.L. Erickson, and S.L. Sikkenga, Aero Engine Test Experience with CMSX-4 Alloy Single Crystal Turbine Blade, J. Eng. Gas. Turbine Power, 1996, 118(2), p 380–388

    Article  Google Scholar 

  23. J.H. Chen and J.A. Little, Degradation of the Platinium Alumide Coating on CMSX-4 at 1100 °C, Surf. Coat. Technol., 1997, 92(1), p 69–77

    Article  CAS  Google Scholar 

  24. P. Caron and T. Khan, Evolution of Ni-based Superalloys for Single Crystal Gas Turbine Blade Applications, Aerosp. Sci. Technol., 1999, 3, p 513–523

    Article  Google Scholar 

  25. S. Wöllmer, T. Mack, and U. Glatzel, Influence of Tungsten and Rhenium Concentration on Creep Properties of a Second-Generation Superalloy, Mater. Sci. Eng. A, 2001, 319–321, p 792–795

    Article  Google Scholar 

  26. O.T. Ola, O.A. Ojo, P. Wanjara, and M.C. Charturvedi, A Study of Linear Friction Welds Microstructure in Single Crystal CMSX-486, Metall. Trans. A, 2012, 43(3), p 921–933

    Article  CAS  Google Scholar 

  27. J. Wahl and Harris K., New Single Crystal Superalloys: Overview and Update, Eurosuperalloys, in MATEC Web of Conferences, 2014, pp. 1–6.

  28. A. Mottura and R.C. Reed, What is the Role of Rhenium in Single Crystal Superalloys. Eurosuperalloys, in MATEC Web of Conferences, 2014, pp. 1–6.

  29. M. Huang and J. Zhu, An Overview of Rhenium Effect in Single Crystal Superalloys, Rare Met., 2016, 35(2), p 127–139

    Article  CAS  Google Scholar 

  30. Z. Shi, J. Li, S. Liu, and M. Han, High Cycle Fatigue Behavior of the Second Generation Single Crystal Superalloy DD6, Trans. Nonferrous Met. Soc. China, 2011, 21(5), p 998–1003

    Article  CAS  Google Scholar 

  31. K. Harris and J.B. Wahl, Developments in Superalloy Castability and New Applications for Advanced Superalloys, Mater. Sci. Technol., 2009, 25(2), p 147–153

    Article  CAS  Google Scholar 

  32. Y.L. Wang, O.A. Ojo, R.G. Ding, and M.C. Chaturvedi, Weld Metal Cracking in Laser Beam Welded Single Crystal Nickel Base Superalloys, Mater. Sci. Technol., 2009, 25(1), p 68–75

    Article  CAS  Google Scholar 

  33. J.B. Wahl and K. Harris, CMSX-486 Single Crystal Alloy: Production Experience and Development of an Improved Version, in ASME Turbo Expo: Power for Land, Sea, and Air, 2006, pp. 931–939.

  34. J.B. Wahl and K. Harris, CMSX-486 Alloy Update, in ASME Turbo Expo: Power for Land, Sea, and Air, 2009, pp. 861–871.

  35. V. Sabelkin, G. Joshi, S. Mall, W.J. Porter, and R. John, Monotonic Tension and Creep Behaviour of Single Crystal CMSX-486 under Combustion Environment, Mater. Sci. Eng. A, 2013, 569, p 106–116

    Article  CAS  Google Scholar 

  36. H. Haight, A. Potter, J. Summer, and S. Gray, New Technique to Map Hot Corrosion Damage: CMSX-4 Example, Oxid. Met., 2015, 84, p 607–619

    Article  CAS  Google Scholar 

  37. A. Paraschiv, G. Matache, and C. Puscasu, The Effect of Heat Treatment on the Homogenization of CMSX-4 Single-Crystal Ni-Based Superalloy, Transp. Res. Proc., 2018, 299, p 303–311

    Article  Google Scholar 

  38. J. Gonzalez-Rodriguez, S. Haro, A. Martinez-Villafane, V. Salinas-Bravo, and J. Porcayo-Calderon, Corrosion Performance of Heat Resistant Alloys in Na2SO4-V2O5 Molten Salts, Mater. Sci. Eng. A, 2006, 435–436, p 258–265

    Article  Google Scholar 

  39. I. Gurrappy, Identification of Hot Corrosion Resistant MCrAlY Based Bond Coatings for Gas Turbine Engine Applications, Surf. Coat. Technol., 2001, 139, p 272–283

    Article  Google Scholar 

  40. I. Gurrappa, Influence of Alloying Elements on Hot Corrosion of Superalloys and Coating: Necessity of Smart Coatings for Gas Turbine Engines, Mater. Sci. Technol., 2003, 19, p 178–183

    Article  CAS  Google Scholar 

  41. R. Sivakumar, P.K. Sagar, and L.M. Bhatia, On the Electrochemical Nature of Hot Corrosion Attack in Ni-Cr alloys, Oxid. Met., 1985, 24(5–6), p 315–330

    Article  CAS  Google Scholar 

  42. P. Lortrakul, R.W. Trice, K.P. Trumble, and M. Dayananda, Investigation of the Mechanisms of Type II, Hot Corrosion of Superalloy CMSX-4, Corros. Sci., 2014, 80, p 408–415

    Article  CAS  Google Scholar 

  43. O.T. Ola, O.A. Ojo, and M.C. Chaturvedi, Role of Filler Alloy Composition on Laser Arc Hybrid Weldability of Nickel-Base IN738 Superalloy, Mater. Sci. Technol., 2014, 30(12), p 1461–1469

    Article  CAS  Google Scholar 

  44. F.H. Stott, G.C. Wood, and J. Stringer, The influence of Alloying Elements on the Development and Maintenance of Protective Scales, Oxid. Met., 1995, 44(1–2), p 113–145

    Article  CAS  Google Scholar 

  45. J.R. Galvele, R.M. Torresi, R.M. Carranza, and R.M. Passivity, Breakdown, its Relation to Pitting and Stress-Corrosion-Cracking Processes, Corros. Sci., 1990, 31, p 563–571

    Article  CAS  Google Scholar 

  46. A. Geber, U. Woff, A. John, J. Eckert, and L. Schultz, Stability of the Bulk Glass-Forming Mg65Y10Cu25 Alloy in Aqueous Electrolytes, Mater. Sci. Eng. A, 2001, 299, p 123–135

    Google Scholar 

  47. F. Pettit and G.H. Meier, Oxidation and Hot Corrosion of Superalloys, 1984, Metall. & Mat. Dept., Univ. of Pittsburgh, pp. 651–684.

  48. M. Göbel, A. Ratimel, and M. Schiitze, The Isothermal Oxidation Behavior of Several Nickel-Base Single Crystal Superalloys with and Without Coatings, Oxid. Met., 1993, 39(3–4), p 231–261

    Article  Google Scholar 

  49. C.T. Liu, X.F. Sun, H.R. Guan, and Z.Q. Hu, Oxidation of the Single Crystal Ni-Base Superalloy DD32 Containing Rhenium in Air at 900 and 1000 °C, Surf. Coat. Technol., 2005, 197(1), p 39–44

    Article  CAS  Google Scholar 

  50. K. Kawagishi, H. Harada, A. Sato, A. Sato, and T. Kobayashi, The Oxidation Properties of Fourth Generation Single-Crystal Nickel-Based Superalloys, JOM, 2006, 58(1), p 43–46

    Article  CAS  Google Scholar 

  51. G. Zhou and Y.S. Kang, Synthesis and Characterization of the Nickel Titanate NiTiO3 Nanoparticles in CTAB, J. Dispers. Sci. Technol., 2006, 27(5), p 727–730

    Article  CAS  Google Scholar 

  52. H. Singh, D. Puri, S. Prakash, and R. Maiti, Characterization of Oxide Scales to Evaluate High Temperature Oxidation Behaviour of Ni-20Cr Coated Superalloy, Mater. Sci. Eng. A, 2007, 464(1–2), p 110–116

    Article  Google Scholar 

  53. E. Liu, Z. Zheng, X. Guan, J. Tong, L. Ning, and Y. Yu, Influence of Pre-oxidation in the Hot Corrosion of DZ68 Superalloy in the Mixture of Na2SO4-NaCl, J. Mater. Sci. Technol., 2010, 26(10), p 895–899

    Article  CAS  Google Scholar 

  54. X. Lu, S. Tian, X. Yu, and C. Wang, Oxidation Behavior of a Single Crystal Ni-Base Superalloy in Air at 900 and 1050 °C, Rar. Met., 2011, 30, p 439–442

    Article  CAS  Google Scholar 

  55. R. Yang, Y. Wu, Q. Wu, S. Li, Y. Ma, and S. Gong, Microstructure and Oxidation Behavior of Modified Aluminide Coatings on Ni3Al-based Single Crystal Superalloy, Chin. J. Aeronaut., 2012, 25(5), p 825–830

    Article  CAS  Google Scholar 

  56. L. Zhu, S. Zhu, and F. Wang, Hot Corrosion Behaviour of a Ni + CrAlYSiN Composite Coating in Na2SO4-25 wt.% NaCl Melt, Appl. Surf. Sci., 2013, 268, p 103–110

    Article  CAS  Google Scholar 

  57. M.A. Ruiz-Preciado, A. Kassiba, A. Gibaud, and A. Morales-Acevedo, Comparison of Nickel Titanate (NiTiO3) Powders Synthesized by Sol–Gel and Solid-State Reaction, Mater. Sci. Semicond. Process., 2015, 37, p 171–178

    Article  CAS  Google Scholar 

  58. I. Gurrappa, I.V.S. Yashwanth, I. Mounika and S. Kuroda, The Importance of Hot Corrosion and its Effective Prevention for Enhanced Efficiency of Gas Turbines, Gas Turbines Materials-Materials, Modelling and Performance, Chapter 3, INTECH Publishers, 2015, pp. 56–58.

  59. V. Mannava, A.S. Rao, N. Paulose, and R.S. Kottada, Hot Corrosion Studies on Ni-Base Superalloy at 650 °C under Marine like Environment Conditions Using Three Salt Mixtures (Na2SO4 + NaCl + NaVO3), Corros. Sci., 2016, 105, p 109–119

    Article  CAS  Google Scholar 

  60. Y. Niu, X.J. Zhang, Y. Wu, and F. Gesmundo, The Third-Element Effect in the Oxidation of Ni-xCr-7Al (x = 0, 5, 10, 15 at.%) Alloys in 1 atm O2 at 900-1000 °C, Corros. Sci., 2006, 48, p 4020–4036

    Article  CAS  Google Scholar 

  61. S.Y. Wang, F. Gesmundo, W.T. Wu, and Y. Niu, A Non-classical Type of Third-Element Effect in the Oxidation of Cu-xCr-2Al alloys at 1173 K, Scr. Mater., 2006, 54, p 1563–1568

    Article  CAS  Google Scholar 

  62. M.P. Brady, J.L. Smialek, J. Smith, and D.L. Humphrey, The Role of Cr in Promoting Protective Alumina Scale Formation by γ-Based Ti-Al-Cr Alloys-1 Compatibility with Alumina and Oxidation Behavior in Oxygen, Acta Mater., 1997, 45(6), p 2357–2369

    Article  CAS  Google Scholar 

  63. Z.G. Zhang, X.L. Zhang, and L. Sheng, The Effect of the Third Element Cr on Oxidation Behavior of Fe-xCr-10Al (at.%) Alloys at 900 °C, Open Corros. J., 2009, 2(1), p 37–44

    Article  CAS  Google Scholar 

  64. Q. Li, J. Song, D. Wang, Q. Yu, and C. Xiao, Effect of Cr, Hf and temperature on the Interface Reaction Between Nickel Melt and Silicon Oxide Core, Rar. Met., 2011, 30, p 405–409

    Article  Google Scholar 

  65. V.P. Deodeshmukh, Hot Corrosion Behavior of Pt-Modified Ni- and Co-Based Alloys and Coatings, Iowa State University, Iowa, PhD Thesis, 2007, pp. 1–203.

  66. M.P. Brady, Y. Yamamoto, and M.L. Santella, The Development of Alumina-Forming Austenitic Stainless Steels for High-Temperature Structural Use, JOM, 2008, 60(7), p 12–18

    Article  CAS  Google Scholar 

  67. T. Huang, E.A. Gulbransen, and G.H. Meier, Hot Corrosion of Ni-base Turbine Alloys in Atmosphere in Coal-Conversion Systems, J. Met., 1979, 31(3), p 28–35

    CAS  Google Scholar 

  68. J.F. Guzowski, Hot corrosion of Advanced Nickel-Based Disk Alloys. The Ohio State University, Ohio, M.Sc Thesis, 2013, pp. 1–115.

  69. P.K. Samantaroy, G. Suresh, and U. Mudali, Effect of Heat Treatment on Pitting Corrosion Resistance of Nickel Based Superalloys in Acidic Chloride Medium, Int. J. Mater. Sci., 2013, 3(4), p 170–178

    Article  Google Scholar 

  70. X.W. Li, T. Liu, L. Wang, X.G. Liu, L.H. Lou, and J. Zhang, Effect of Carbon Content on the Microstructure and Creep Properties of a 3rd Generation Single Crystal Nickel-Base Superalloy, Mater. Sci. Eng. A, 2015, 639, p 732–738

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of Natural Science and Engineering Research Council of Canada (NSERC) through (Grant Number NSERC RGPIN 341220-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Oluwasegun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oluwasegun, K.M., Ajide, O.O., Tanaka, T. et al. Hot Corrosion Performance of Single-Crystal CMSX-4 and CMSX-486 Superalloys in the Mixture of Na2SO4-NaCl Melts. J. of Materi Eng and Perform 28, 5509–5520 (2019). https://doi.org/10.1007/s11665-019-04267-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04267-w

Keywords

Navigation