Skip to main content
Log in

Alternative PWHT to Improve High-Temperature Mechanical Properties of Advanced 9Cr Steel Welds

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Creep-resistant 9Cr steels are extremely important in thermal power generation industry due to their marked resistance to creep and corrosion. The weldability of these alloys is critical since they are used in welded construction equipment. The required mechanical properties are achieved after post-weld heat treatment. This study examined the effect of different post-weld heat treatments on microstructure and mechanical properties of creep strength-enhanced 9Cr steel welding deposits. It was obtained with an experimental flux-cored arc welding wire used under protective gas (Ar-20% CO2). The heat treatments used were: (1) tempering (760 °C × 2 h), (2) solubilizing (1050 °C × 1 h) + tempering (760 °C × 2 h) and (3) solubilizing (1150 °C × 1 h) + first tempering (660 °C × 3 h) + second tempering (660 °C × 3 h). All-weld metal chemical composition was analyzed, and hot tensile tests were carried out at different temperatures. Charpy-V impact tests and Vickers microhardness measurements were also performed. Microstructures were studied using x-ray diffraction and optical and scanning electron microscopy. In all cases, a martensitic matrix with intergranular and intra-granular precipitates was detected. In the as-welded condition, δ-ferrite was also found. Microhardness dropped, and the impact energy increased with post-weld heat treatments. The highest hot tensile strength result was achieved with samples submitted to austenization at 1150 °C and double tempering at 660 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and R. Purgert, U.S. Program on Materials Technology for Ultra-Supercritical Coal Power Plants, J. Mater. Eng. Perform., 2005, 14, p 281–292

    Article  CAS  Google Scholar 

  2. J. Oñoro, Weld Metal Microstructure Analysis of 9–12% Cr Steels, Int. J. Press. Vessels Pip., 2006, 83, p 540–545

    Article  Google Scholar 

  3. E. Oakey, L.W. Pinder, R. Vanstone, M. Henderson, and S. Osgerby, Review of Status of Advanced Materials for Power Generation Part 4, COAL R224 02/1509, DTI/Pub URN, 2003

  4. G. Posch, S. Baumgartner, and M. Fiedler, GMA-Welding of Creep Resistant Steels with Flux Cored Wires (FCAW): Perspectives and Limitations, Weld. World, 2009, 53, p 619–624

    CAS  Google Scholar 

  5. W. Marshall, Z. Zhang, and G.B. Holloway, Welding Consumables for P92 and T23 Creep Resisting Steels A, in Fifth International EPRI RRAC Conference, June 27th, 2002, p. 1–17

  6. Z. Zhang, J.C.M. Farrar, and A.M. Barnes, Weld Metals for P91—Tough Enough, Metrode Products Limited, U.K. TWI, Ltd., Chertsey, 2002

    Google Scholar 

  7. B. Arivazhagan, S. Sundaresan, and M. Kamaraj, A Study on Influence of Shielding Gas Composition on Toughness of Flux-Cored Arc Weld of Modified 9Cr-1Mo (P91) Steel, J. Mater. Process. Technol., 2009, 209(12–13), p 5245–5253

    Article  CAS  Google Scholar 

  8. C. Chovet, E. Galand, and B. Leduey, Effect of Various Factors on Toughness in P92 Saw Weld Metal, Weld. World, 2013, 52(7–8), p 18–26

    Google Scholar 

  9. Z. Zhang, G. Holloway, and A. Marshall, Properties of T/P92 Steel Weld Metals for Ultra Super Crtitical (USC) Power Plant, Weld. World, 2008, 6(1), p 1–13

    Google Scholar 

  10. H. Wang, H. Zhang, and J. Li, Microstructural Evolution of 9Cr-1Mo Deposited Metal Subjected to Weld Heating, J. Mater. Process. Technol., 2009, 209(6), p 2803–2811

    Article  CAS  Google Scholar 

  11. A.C. Chovet, E. Bauné, G. Ehrhart, E. Galand, and G. Liberati, Development of Filler Materials for New 9–12% Cr Martensitic Creep Resistant Steels, in New Developments on Metallurgy and Applications of High Strength Steels Brazil, 2008, p. 1–7

  12. ISO, Welding Consumables—Covered Electrodes for Manual Metal Arc Welding of Creep-Resisting Steels—Classification, ISO 3580:2017, International Organization for Standardization, Geneva, 2017

    Google Scholar 

  13. K. Maruyama, K. Sawada, and J. Koike, Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel, ISIJ Int., 2001, 41(6), p 641–653

    Article  CAS  Google Scholar 

  14. P.J. Ennis, The Creep Rupture Behaviour and Steam Oxidation Resistance of P92 Weldments, Mater. High Temp., 2006, 23(3), p 187–193

    Article  CAS  Google Scholar 

  15. L.I. Yajiang, W. Juan, Z. Bing, and F. Tao, XRD and TEM Analysis of Microstructure in the Welding Zone of 9Cr-1Mo-V-Nb Heat-Resisting Steel, Bull. Mater. Sci., 2002, 25(3), p 213–217

    Article  Google Scholar 

  16. Y. Yin, R. Faulkner, P. Morris, and P. Clarke, Modelling and Experimental Studies of Alternative Heat Treatments in Steel 92 to Optimise Long Term Stress Rupture Properties, Energy Mater., 2008, 3(4), p 232–242

    Article  CAS  Google Scholar 

  17. L.O. Bueno and J.F.R. Sobrinho, Correlation between Creep and Hot Tensile Behaviour for 2.25Cr-1Mo Steel from 500 °C to 700 °C Part 1: An Assessment According to Usual Relations Involving Stress, Temperature, Strain Rate and Rupture Time, Rev. Mater., 2012, 17(3), p 1098–1108

    CAS  Google Scholar 

  18. J.A. Moreto, D.B.V. De Castro, L.D.O. Bueno, and H.D.A. Ponte, Correlação de Dados de Tração a Quente e Fluência Para a Liga Kanthal A1, Rev. Esc. Minas, 2011, 64(2), p 181–186

    Article  Google Scholar 

  19. P.R. Sreenivasan, Hot-Tensile Data and Creep p Properties Derived there-from for 316L (N) Stainless Steel with Various Nitrogen Contents, Procedia Eng., 2013, 55, p 82–87

    Article  CAS  Google Scholar 

  20. American Welding Society, Specification for Low-Alloy Steel Electrodes for Flux Cored Arc Welding, ANSI/AWS A5.29/A5.29M:2010, American Welding Society, Miami, 2010

    Google Scholar 

  21. ASTM International, Standard specification for seamless ferritic and austenitic alloy-steel boiler, superheater, and heat-exchanger tubes, ASTM A213/A213 M-17, ASTM International, West Conshohocken, 2017

    Google Scholar 

  22. ASTM International, Standard specification for seamless ferritic alloy-steel pipe for high-temperature service, ASTM A335/A335 M-15a, ASTM International, West Conshohocken, 2015

    Google Scholar 

  23. ASTM International, Standard test methods for notched bar impact testing of metallic materials, ASTM E23-16b, ASTM International, West Conshohocken, 2016

    Google Scholar 

  24. R.G. Faulkner, J.A. Williams, E.G. Sanchez, and A.W. Marshall, Influence of Co, Cu and W on Microstructure of 9%Cr Steel Weld Metals, Mater. Sci. Technol., 2003, 19(3), p 347–354

    Article  CAS  Google Scholar 

  25. V.T. Paul, S. Saroja, P. Hariharan, A. Rajadurai, and M. Vijayalakshmi, Identification of Microstructural Zones and Thermal Cycles in a Weldment of Modified 9Cr-1Mo Steel, J. Mater. Sci., 2007, 42(14), p 5700–5713

    Article  CAS  Google Scholar 

  26. P. Mayr, T.A. Palmer, J.W. Elmer, E.D. Specht, and S.M. Allen, Formation of Delta Ferrite in 9 wt Pct Cr Steel Investigated by In-Situ X-ray Diffraction Using Synchrotron Radiation, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2010, 41(10), p 2462–2465

    Article  Google Scholar 

  27. F. Abe and M. Tabuchi, Microstructure and Creep Strength of Welds in Advanced Ferritic Power Plant Steels, Sci. Technol. Weld. Join., 2004, 9(1), p 22–30

    Article  CAS  Google Scholar 

  28. K. Kaneko, S. Matsumura, A. Sadakata, K. Fujita, W.J. Moon, S. Ozaki, N. Nishimura, and Y. Tomokiyo, Characterization of Carbides at Different Boundaries of 9Cr-Steel, Mater. Sci. Eng., A, 2004, 374(1–2), p 82–89

    Article  Google Scholar 

  29. M. Taneike, F. Abe, and K. Sawada, Creep-Strengthening of Steel at High Temperatures Using Nano-Sized Carbonitride Dispersions, Nature, 2003, 424(6946), p 294–296

    Article  CAS  Google Scholar 

  30. M.A. Yescas and P.F. Morris, Improved Creep Resistance of Steel 92 by the Use of Modified Heat Treatments, in ECCC Creep Conference, 2005

  31. K. Tokumo, K. Hanada, R. Uemori, T. Takeda, and K. Itoh, A Complex Carbonitride of Niobium Ans Vanadium in 9% Cr Ferritic Steel, Scr. Mater., 1991, 25(4), p 871–876

    Article  Google Scholar 

  32. K. Hamada, K. Tokuno, Y. Tomita, H. Mabuchi, and K. Okamoto, Effects of Precipitate Shape on High Temperature Strength of Modified 9Cr-1 Mo Steels, ISIJ Int., 1995, 35(1), p 86–91

    Article  CAS  Google Scholar 

  33. M. Hättestrand and H.-O. Andrén, Boron Distribution in 9–12% Chromium Steels, Mater. Sci. Eng., A, 1999, 270(1), p 33–37

    Article  Google Scholar 

  34. T. Horiuchi, M. Igarashi, and F. Abe, Improved Utilization of Added B in 9Cr Heat-Resistant Steel Containing W, ISIJ Int., 2002, 42(Supplement), p S67–S71

    Article  CAS  Google Scholar 

  35. K. Coleman and W. Newell, P91 and Beyond, Weld. J. N. Y., 2007, 86, p 29–33

    CAS  Google Scholar 

  36. G. Sainath, B.K. Choudhary, J. Christopher, E. Isaac Samuel, and M.D. Mathew, Effects of Temperature and Strain Rate on Tensile Stress-Strain and Workhardening Behaviour of P92 Ferritic Steel, Mater. Sci. Technol., 2014, 30(8), p 911–920

    Article  CAS  Google Scholar 

  37. D.J. Michel, J. Moteff, and A.J. Lovell, Substructure of Type 316 Stainless Deformed in Slow Tension at Temperatures between 21° and 816 °C, Acta Metall., 1973, 21, p 1269–1277

    Article  CAS  Google Scholar 

  38. B.P. Kashyap, K. McTaggart, and K. Tangri, Study on the Substructure Evolution and Flow Behaviour in Type 316L Stainless Steel over the Temperature Range 21–900 °C, Philos. Mag. A, 1988, 57(1), p 97–114

    Article  CAS  Google Scholar 

  39. J.W. Edingtont and R.E. Smallman, The Relationship Between Flow Stress and Dislocation in Deformed Vanadium, Acta Metall., 1964, 12, p 1313–1328

    Article  Google Scholar 

  40. D.J. Dingley and D. McLean, Components of Iron, Acta Metall., 1967, 15, p 885–901

    Article  CAS  Google Scholar 

  41. A.M. Garde, A.T. Santhanam, and R.E. Reed-Hill, The Significance of Dynamic Strain Aging in Titanium, Acta Metall., 1972, 20(2), p 215–220

    Article  CAS  Google Scholar 

  42. J.G. Morris, Dynamic Strain Aging in Aluminum Alloys, Mater. Sci. Eng., 1974, 13(2), p 101–108

    Article  CAS  Google Scholar 

  43. S. Okamoto, D.K. Matlock, and G. Krauss, The Transition from Serrated to Non-Serrated Flow in Low-Carbon Martensite at 150 °C, Scr. Metall. Mater., 1991, 25(1), p 39–44

    Article  CAS  Google Scholar 

  44. G.B. Holloway, Z. Zhang, and A. Marshall, Properties of T/P92 CrMo Weld Metals for Ultra Super Critical (USC) Power Plant, Int. J. Microstruct. Mater. Prop., 2011, 6(1/2), p 20–39

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to METRODE PRODUCTS LTD—UK for the design, fabrication and donation of the consumable used, to CONARCO-ESAB Argentina for performing the chemical analysis, to AIR LIQUIDE Argentina for donating gases for welding and to the SCANNING ELECTRON MICROSCOPY LABORATORY OF INTI-Mechanics, Argentina, for facilities for both SEM analysis and Charpy-V tests. They also recognize CONICET, ANPCyT and APUEMFI (National University of Lomas de Zamora), Argentina, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Burgos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgos, A., Svoboda, H., Zhang, Z. et al. Alternative PWHT to Improve High-Temperature Mechanical Properties of Advanced 9Cr Steel Welds. J. of Materi Eng and Perform 27, 6328–6338 (2018). https://doi.org/10.1007/s11665-018-3736-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3736-5

Keywords

Navigation