Skip to main content
Log in

Laser Powder Deposition Parametric Optimization and Property Development for Ti-6Al-4V Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, Ti6Al4V alloy was produced via laser powder deposition (LPD). To obtain Ti6Al4V alloy with maximum density, LPD parameters for preparing Ti6Al4V samples were optimized using the Taguchi method. Results were analyzed on the basis of the signal-to-noise (S/N) ratios and analyses of variance. A high energy density should be used to achieve higher levels of densification. The optimal combination of parameters for density was a scanning speed of 550 mm/min, laser power of 160 W, powder feeding rate of 0.99 g/min, and shield gas flow of 8 L/min. An almost fully dense Ti6Al4V sample was prepared using the optimized LPD process, and the relative density was greater than 99%. In addition, the microstructure and properties of Ti6Al4V samples prepared by optimized LPD process were investigated. The microstructure investigation revealed that the LPD-prepared Ti6Al4V sample was predominantly composed of fine acicular α phase and lath-type α phase. Tensile and microhardness tests indicated that the LPD sample had higher mechanical properties than the traditional cast Ti6Al4V alloy because of the acicular martensitic phase and smaller grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.S. Tran, J.T. Tchuindjang, H. Paydas, A. Mertens, R.T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A.M. Habraken, 3D Thermal Finite Element Analysis of Laser Cladding Processed Ti-6Al-4V Part with Microstructural Correlations, Mater. Des., 2017, 128, p 130–142. https://doi.org/10.1016/j.matdes.2017.04.092

    Article  CAS  Google Scholar 

  2. J. Sun, Y. Yang, and D. Wang, Parametric Optimization of Selective Laser Melting for Forming Ti6Al4V Samples by Taguchi Method, Opt. Laser Technol., 2013, 49, p 118–124. https://doi.org/10.1016/j.optlastec.2012.12.002

    Article  CAS  Google Scholar 

  3. J. Liu, X.L. Gao, L.J. Zhang, and J.X. Zhang, Effects of the Heterogeneity in the Electron Beam Welded Joint on Mechanical Properties of Ti6Al4V Alloy, J. Mater. Eng. Perform., 2015, 24(1), p 319–328

    Article  CAS  Google Scholar 

  4. J. Lu, L. Chang, J. Wang, L. Sang, S. Wu, and Y. Zhang, In-Situ Investigation of the Anisotropic Mechanical Properties of Laser Direct Metal Deposition Ti6Al4V Alloy, Mater. Sci. Eng. A, 2018, 712, p 199–205. https://doi.org/10.1016/j.msea.2017.11.106

    Article  CAS  Google Scholar 

  5. C. Pirozzi, S. Franchitti, R. Borrelli, F. Caiazzo, V. Alfieri, and P. Argenio, Study on the Factors Affecting the Mechanical Behavior of Electron Beam Melted Ti6Al4V, J. Mater. Eng. Perform., 2017, 26(9), p 4491–4499

    Article  CAS  Google Scholar 

  6. A.J. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and D.W. Seely, Fatigue Behavior and Failure Mechanisms of Direct Laser Deposited Ti-6Al-4V, Mater. Sci. Eng. A, 2016, 655, p 100–112. https://doi.org/10.1016/j.msea.2015.12.026

    Article  CAS  Google Scholar 

  7. X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, and C.K. Chua, Graded Microstructure and Mechanical Properties of Additive Manufactured Ti-6Al-4V via Electron Beam Melting, Acta Mater., 2015, 97, p 1–16. https://doi.org/10.1016/j.actamat.2015.06.036

    Article  CAS  Google Scholar 

  8. H.K. Rafi, N.V. Karthik, H. Gong, T.L. Starr, and B.E. Stucker, Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting, J. Mater. Eng. Perform., 2013, 22(12), p 3872–3883. https://doi.org/10.1007/s11665-013-0658-0

    Article  CAS  Google Scholar 

  9. A. Crespo and R. Vilar, Finite Element Analysis of the Rapid Manufacturing of Ti-6Al-4V Parts by Laser Powder Deposition, Scr. Mater., 2010, 63(1), p 140–143

    Article  CAS  Google Scholar 

  10. Y.J. Liang, D. Liu, and H.M. Wang, Microstructure and Mechanical Behavior of Commercial Purity Ti/Ti-6Al-2Zr-1Mo-1V Structurally Graded Material Fabricated by Laser Additive Manufacturing, Scr. Mater., 2014, 74, p 80–83. https://doi.org/10.1016/j.scriptamat.2013.11.002

    Article  CAS  Google Scholar 

  11. M. Iebba, A. Astarita, D. Mistretta, I. Colonna, M. Liberini, F. Scherillo, C. Pirozzi, R. Borrelli, S. Franchitti, and A. Squillace, Influence of Powder Characteristics on Formation of Porosity in Additive Manufacturing of Ti-6Al-4V Components, J. Mater. Eng. Perform., 2017, 26(8), p 4138–4147

    Article  CAS  Google Scholar 

  12. Y. Liu, C. Liu, W. Liu, Y. Ma, C. Zhang, Q. Cai, and B. Liu, Microstructure and Properties of Ti/Al Lightweight Graded Material by Direct Laser Deposition, Mater. Sci. Technol., 2017, https://doi.org/10.1080/02670836.2017.1412042

    Article  Google Scholar 

  13. Y.Z. Zhang, C. Meacock, and R. Vilar, Laser Powder Micro-Deposition of Compositional Gradient Ti-Cr Alloy, Mater. Des., 2010, 31(8), p 3891–3895. https://doi.org/10.1016/j.matdes.2010.02.052

    Article  CAS  Google Scholar 

  14. X. Wang, D. Deng, H. Yi, H. Xu, S. Yang, and H. Zhang, Influences of Pulse Laser Parameters on Properties of AISI316L Stainless Steel Thin-Walled Part by Laser Material Deposition, Opt. Laser Technol., 2017, 92, p 5–14. https://doi.org/10.1016/j.optlastec.2016.12.021

    Article  CAS  Google Scholar 

  15. M.S. Sawant and N.K. Jain, Characteristics of Single-Track and Multi-Track Depositions of Stellite by Micro-Plasma Transferred Arc Powder Deposition Process, J. Mater. Eng. Perform., 2017, 26(8), p 4029–4039

    Article  CAS  Google Scholar 

  16. U.S. Bertoli, A.J. Wolfer, M.J. Matthews, J.P.R. Delplanque, and J.M. Schoenung, On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting, Mater. Des., 2017, 113, p 331–340. https://doi.org/10.1016/j.matdes.2016.10.037

    Article  CAS  Google Scholar 

  17. R.M. Mahamood and E.T. Akinlabi, Scanning Speed Influence on the Microstructure and Micro Hardness Properties of Titanium Alloy Produced by Laser Metal Deposition Process, Mater. Today Proc., 2017, 4(4), p 5206–5214. https://doi.org/10.1016/j.matpr.2017.05.028

    Article  Google Scholar 

  18. H. Ali, H. Ghadbeigi, and K. Mumtaz, Effect of Scanning Strategies on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V, Mater. Sci. Eng. A, 2017, 712, p 175–187. https://doi.org/10.1016/j.msea.2017.11.103

    Article  CAS  Google Scholar 

  19. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.P. Kruth, A Study of the Microstructural Evolution during Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58(9), p 3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004

    Article  CAS  Google Scholar 

  20. B.A.E. Ben-Arfa, I.M.M. Salvado, J.R. Frade, and R.C. Pullar, Fast Route for Synthesis of Stoichiometric Hydroxyapatite by Employing the Taguchi Method, Mater. Des., 2016, 109, p 547–555. https://doi.org/10.1016/j.matdes.2016.07.083

    Article  CAS  Google Scholar 

  21. M. Tutar, H. Aydin, C. Yuce, N. Yavuz, and A. Bayram, The Optimisation of Process Parameters for Friction Stir Spot-Welded AA3003-H12 Aluminium Alloy Using a Taguchi Orthogonal Array, Mater. Des., 2014, 63, p 789–797. https://doi.org/10.1016/j.matdes.2014.07.003

    Article  CAS  Google Scholar 

  22. N. Read, W. Wang, K. Essa, and M.M. Attallah, Selective Laser Melting of AlSi10Mg Alloy: Process Optimisation and Mechanical Properties Development, Mater. Des., 2015, 65, p 417–424. https://doi.org/10.1016/j.matdes.2014.09.044

    Article  CAS  Google Scholar 

  23. S. Hong, Y. Wu, B. Wang, Y. Zheng, W. Gao, and G. Li, High-Velocity Oxygen-Fuel Spray Parameter Optimization of Nanostructured WC-10Co-4Cr Coatings and Sliding Wear Behavior of the Optimized Coating, Mater. Des., 2014, 55, p 286–291. https://doi.org/10.1016/j.matdes.2013.10.002

    Article  CAS  Google Scholar 

  24. Siddhartha, A. Patnaik, and A.D. Bhatt, Mechanical and Dry Sliding Wear Characterization of Epoxy-TiO2 Particulate Filled Functionally Graded Composites Materials Using Taguchi Design of Experiment, Mater. Des., 2011, 32(2), p 615–627. https://doi.org/10.1016/j.matdes.2010.08.011

    Article  CAS  Google Scholar 

  25. Y. Qin, Y. Wu, J. Zhang, S. Hong, W. Guo, L. Chen, and H. Liu, Optimization of the HOVF Spray Parameters by Taguchi Method for High Corrosion-Resistant Fe-Based Coatings, J. Mater. Eng. Perform., 2015, 24(7), p 2637–2644

    Article  CAS  Google Scholar 

  26. X. Lin, T.M. Yue, H.O. Yang, and W.D. Huang, Microstructure and Phase Evolution in Laser Rapid Forming of a Functionally Graded Ti-Rene88DT Alloy, Acta Mater., 2006, 54(7), p 1901–1915

    Article  CAS  Google Scholar 

  27. Y. Li, H. Yang, X. Lin, W. Huang, J. Li, and Y. Zhou, The Influences of Processing Parameters on Forming Characterizations during Laser Rapid Forming, Mater. Sci. Eng. A, 2003, 360(1–2), p 18–25

    Article  Google Scholar 

  28. Y. Li, Y. Hu, W. Cong, L. Zhi, and Z. Guo, Additive Manufacturing of Alumina Using Laser Engineered Net Shaping: Effects of Deposition Variables, Ceram. Int., 2017, 43(10), p 7768–7775

    Article  CAS  Google Scholar 

  29. H. Attar, S. Ehtemam-Haghighi, D. Kent, X. Wu, and M.S. Dargusch, Comparative Study of Commercially Pure Titanium Produced by Laser Engineered Net Shaping, Selective Laser Melting and Casting Processes, Mater. Sci. Eng. A, 2017, 705, p 385–393. https://doi.org/10.1016/j.msea.2017.08.103

    Article  CAS  Google Scholar 

  30. K. Nandagopal and C. Kailasanathan, Analysis of Mechanical Properties and Optimization of Gas Tungsten Arc Welding (GTAW) Parameters on Dissimilar Metal Titanium (6Al-4V) and Aluminium 7075 by Taguchi and ANOVA Techniques, J. Alloys Compd., 2016, 682, p 503–516. https://doi.org/10.1016/j.jallcom.2016.05.006

    Article  CAS  Google Scholar 

  31. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A.M. Rubenchik, Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing, J. Mater. Process. Technol., 2014, 214(12), p 2915–2925. https://doi.org/10.1016/j.jmatprotec.2014.06.005

    Article  Google Scholar 

  32. H. Albetran, Y. Dong, and I.M. Low, Characterization and Optimization of Electrospun TiO2/PVP Nanofibers Using Taguchi Design of Experiment Method, J. Asian Ceram. Soc., 2015, 3(3), p 292–300. https://doi.org/10.1016/j.jascer.2015.05.001

    Article  Google Scholar 

  33. S.N. Li, H.P. Xiong, N. Li, B.Q. Chen, C. Gao, W.J. Zou, and H.S. Ren, Mechanical Properties and Formation Mechanism of Ti/SiC System Gradient Materials Fabricated by In-Situ Reaction Laser Cladding, Ceram. Int., 2017, 43(1), p 961–967

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the State Key Basic Research Program of China (Grant No. 61XXXX02) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunzhu Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, C., Liu, W. et al. Laser Powder Deposition Parametric Optimization and Property Development for Ti-6Al-4V Alloy. J. of Materi Eng and Perform 27, 5613–5621 (2018). https://doi.org/10.1007/s11665-018-3708-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3708-9

Keywords

Navigation