Skip to main content
Log in

Influence of Powder Characteristics on Formation of Porosity in Additive Manufacturing of Ti-6Al-4V Components

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper aims to study the genesis of defects in titanium components made through two different additive manufacturing technologies: selective laser melting and electron beam melting. In particular, we focussed on the influence of the powders used on the formation of porosities and cavities in the manufactured components. A detailed experimental campaign was carried out to characterize the components made through the two additive manufacturing techniques aforementioned and the powders used in the process. It was found that some defects of the final components can be attributed to internal porosities of the powders used in the manufacturing process. These internal porosities are a consequence of the gas atomization process used for the production of the powders themselves. Therefore, the importance of using tailored powders, free from porosities, in order to manufacture components with high mechanical properties is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. I. Gibson, D. Rosem, and B. Stucker, Additive Manufacturing Technologies, Springer, Berlin, 2014, p 19–42

    Google Scholar 

  2. K.V. Wong and A. Hernandez, A Review of Additive Manufacturing, Int. Sch. Res. Netw., 2012, 2012, 208760. doi:10.5402/2012/208760

  3. W.E. Frazier, Metal Additive Manufacturing: A Review, ASM International, Materials Park, 2014

    Google Scholar 

  4. ASTM (2010), Standard Terminology for Additive Manufacturing Technologies, ASTM International, West Conshohocken, 2012

    Google Scholar 

  5. G.N. Levy, R. Schindel, and J.P. Kruth, Rapid Manufacturing and Rapid Tooling with Layer Manufacturing (LM) Technologies: State of the Art and Future Perspectives, CIRP Ann. Manuf. Technol., 2003, 52, p 589–609

    Article  Google Scholar 

  6. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 57(3), p 133–164

    Article  Google Scholar 

  7. M. Seifi, A. Salem, J. Beuth et al., Overview of Materials Qualification Needs for Metal Additive Manufacturing, JOM, 2016, 68, p 747. doi:10.1007/s11837-015-1810-0

    Article  Google Scholar 

  8. L. Chauke, K. Mutombo, and C. Kgomo, Characterization of the Direct Metal Laser Sintered Ti6Al4V Components; 1,2,3 Material Science and Manufacturing/Light Metals, Council for Scientific and Industrial Research (CSIR), Pretoria, 2013

    Google Scholar 

  9. Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, and L.C. Zhang, Microstructure, Defects and Mechanical Behavior of Beta-Type Titanium Porous Structures Manufactured by Electron Beam Melting and Selective Laser Melting, Acta Mater., 2016, 113, p 56–67

    Article  Google Scholar 

  10. Y.J. Liu, H.L. Wang, S.J. Lib, S.G. Wang, W.J. Wang, W.T. Hou, Y.L. Hao, R. Yang, and L.C. Zhang, Compressive and Fatigue Behavior of Beta-Type Titanium Porous Structures Fabricated by Electron Beam Melting, Acta Mater., 2017, 126, p 58–66

    Article  Google Scholar 

  11. E. Sallica-Leva, A.L. Jardini, and J.B. Fogagnolo, Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Parts Obtained by Selective Laser Melting, J. Mech. Behav. Biomed. Mater., 2013, 26, p 98–108

    Article  Google Scholar 

  12. N. Dai, L.-C. Zhang, J. Zhang, X. Zhang, Q. Ni, Y. Chen, W. Maoliang, and C. Yang, Distinction in Corrosion Resistance of Selective Laser Melted Ti-6Al-4V Alloy on Different Planes, Corros. Sci., 2016, 111, p 703–710

    Article  Google Scholar 

  13. N. Dai, L.-C. Zhang, J. Zhang, Q. Chen, and M. Wu, Corrosion Behavior of Selective Laser Melted Ti-6Al-4V Alloy in NaCl Solution, Corros. Sci., 2016, 102, p 484–489

    Article  Google Scholar 

  14. L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, and R.B. Wicker, Microstructure and Mechanical Behavior of Ti-6Al-4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2009, 2, p 20–32

    Article  Google Scholar 

  15. M. Koike, P. Greer, K. Owen, G. Lilly, L.E. Murr, S.M. Gaytan, E. Martinez, and T. Okabe, Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting, Materials, 2011, 4(10), p 1776–1792. doi:10.3390/ma4101776

    Article  Google Scholar 

  16. J.-P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs, Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing, Ann. CIRP, 2007, 56(2), p 730. doi:10.1016/j.cirp.2007.10.004

    Article  Google Scholar 

  17. N. Hrabe and T. Quinn, Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti-6Al-4V) Fabricated Using Electron Beam Melting (EBM), Part 1: Distance from Build Plate and Part Size, Mater. Sci. Eng., A, 2013, 573, p 264–270

    Article  Google Scholar 

  18. L. Loeber, S. Biamino, U. Ackelid, S. Sabbadini, P. Epicoco, P. Fino, J. Eckert, Comparison of Selective Laser and Electron Beam Melted Titanium Aluminides, in Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA, p 8–10.

  19. X. Zhao et al., Comparison of the Microstructures and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting and Electron Beam Melting, Mater. Des., 2016, 95, p 21–31

    Article  Google Scholar 

  20. S. Reginster et al., Processing of Ti Alloys by Additive Manufacturing: A Comparison of the Microstructures Obtained by Laser Cladding, Selective Laser Melting and Electron Beam Melting. Materials Science Forum, Trans Tech Publications, Clausthal-Zellerfeld, 2013

    Google Scholar 

  21. L.-C. Zhang and H. Attar, Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review, Adv. Eng. Mater., 2016, 18, p 463–475

    Article  Google Scholar 

  22. J.H. Moll, Utilization of Gas-Atomized Titanium and Titanium-Aluminide Powder, Overv. Powder Mater., 2000, 52(5), p 32–33

    Google Scholar 

  23. H. Gong, K. Rafi, G. Hengfeng, G.D.J. Ram, T. Starr, and B. Stucker, Influence of Defects on Mechanical Properties of Ti-6Al-4V Components Produced by Selective Laser Melting and Electron Beam Melting, Mater. Des., 2015, 86(5), p 545–554

    Article  Google Scholar 

  24. F.H. Froes, Ed., Titanium—Physical Metallurgy Processing and Applications, ASM International, Materials Park, 2015, p 172–175

    Google Scholar 

  25. L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, and T.B. Sercombe, Manufacture by Selective Laser Melting and Mechanical Behavior of a Biomedical Ti-24Nb-4Zr-8Sn Alloy, Scr. Mater., 2011, 65, p 21–24

    Article  Google Scholar 

  26. H. Attar, M. Calin, L.C. Zhang, S. Scudino, and J. Eckert, Manufacture by Selective Laser Melting and Mechanical Behavior of Commercially Pure Titanium, Mater. Sci. Eng., A, 2014, 593, p 170–177

    Article  Google Scholar 

  27. N. Hrabe, T. Gnäupel-Herold, and T. Quinn, Fatigue Properties of a Titanium Alloy (Ti-6Al-4V) Fabricated Via Electron Beam Melting (EBM): Effects of Internal Defects and Residual Stress, Int. J. Fatigue, 2016, doi:10.1016/j.ijfatigue.2016.04.022

    Google Scholar 

  28. Y. Zhai, H. Galarraga, and D.A. Lados, Microstructure Evolution, Tensile Properties, and Fatigue Damage Mechanisms in Ti-6Al-4V Alloys Fabricated by Two Additive Manufacturing Techniques, Proc. Eng., 2015, 114, p 658–666

    Article  Google Scholar 

  29. D. Gu, Y.-C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe, Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium, Acta Mater., 2012, 60, p 3849–3860

    Article  Google Scholar 

  30. M. Xia, D. Gua, Yu Guanqun, D. Dai, H. Chen, and Q. Shi, Porosity Evolution and Its Thermodynamic Mechanism of Randomly Packed Powder-Bed During Selective Laser Melting of Inconel 718 Alloy, Int. J. Mach. Tools Manuf, 2017, 116, p 96–106

    Article  Google Scholar 

  31. C. Qiu, N.J.E. Adkins, and M.M. Attallah, Microstructure and Tensile Properties of Selectively Laser-Melted and of HIPed Laser-Melted Ti-6Al-4V, Mater. Sci. Eng., A, 2013, 578, p 230–239

    Article  Google Scholar 

Download references

Acknowledgments

The authors are gratefully to Dr. Antonella Scherillo (STFC-ISIS Facility, RAL, OX11 0Q, Didcot, UK) for her precious support in the interpretation and discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Astarita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iebba, M., Astarita, A., Mistretta, D. et al. Influence of Powder Characteristics on Formation of Porosity in Additive Manufacturing of Ti-6Al-4V Components. J. of Materi Eng and Perform 26, 4138–4147 (2017). https://doi.org/10.1007/s11665-017-2796-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2796-2

Keywords

Navigation