Skip to main content

Advertisement

Log in

High Strength and Good Ductility in Cu-3Ag-0.5Zr Alloy by Cryo-Rolling and Aging

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A combination of high strength and good ductility was achieved in a precipitation hardenable Cu-3Ag-0.5Zr alloy through cryo-rolling (80% reduction in thickness) and aging in the temperature range (200-500 °C). The high-strength sheets produced by cryo-rolling showed a threefold increase in yield strength compared to that of the solution-treated and aged (220 MPa) sample, while retaining good ductility. An optimum combination of high strength (614 MPa) and ductility (8%) was achieved by 80% cryo-rolling and aging at 320 °C for 1 h. The high strength and good ductility obtained was attributed to various microstructural factors such as deformation twins, ultra-fine grains, high dislocation density and fine nano-sized silver precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–189. doi:10.1016/S0079-6425(99)00007-9

    Article  Google Scholar 

  2. D.J. Alexander, New Methods for Severe Plastic Deformation Processing, J. Mater. Eng. Perform., 2007, 16, p 360–374. doi:10.1007/s11665-007-9054-y

    Article  Google Scholar 

  3. S.K. Panigrahi, R. Jayaganthan, and V. Chawla, Effect of Cryorolling on Microstructure of Al-Mg-Si Alloy, Mater. Lett., 2008, 62, p 2626–2629. doi:10.1016/j.matlet.2008.01.003

    Article  Google Scholar 

  4. V.S. Sarma, J. Wang, W.W. Jian, A. Kauffmann, H. Conrad, J. Freudenberger et al., Role of Stacking Fault Energy in Strengthening due to Cryo-Deformation of FCC Metals, Mater. Sci. Eng. A, 2010, 527, p 7624–7630. doi:10.1016/j.msea.2010.08.015

    Article  Google Scholar 

  5. T. Shanmugasundaram, B.S. Murty, and Sarma V. Subramanya, Development of Ultrafine Grained High Strength Al-Cu Alloy by Cryorolling, Scr. Mater., 2006, 54, p 2013–2017. doi:10.1016/j.scriptamat.2006.03.012

    Article  Google Scholar 

  6. J.K. Kim, H.G. Jeong, S.I. Hong, Y.S. Kim, and W.J. Kim, Effect of Aging Treatment on Heavily Deformed Microstructure of a 6061 Aluminum Alloy After Equal Channel Angular Pressing, Scr. Mater., 2001, 45, p 901–907. doi:10.1016/S1359-6462(01)01109-5

    Article  Google Scholar 

  7. S. Nagarjuna, U. Chinta Babu, and P. Ghosal, Effect of Cryo-Rolling on Age Hardening of Cu-1.5Ti Alloy, Mater. Sci. Eng. A, 2008, 491, p 331–337. doi:10.1016/j.msea.2008.02.014

    Article  Google Scholar 

  8. S. Cheng, Y.H. Zhao, Y.T. Zhu, and E. Ma, Optimizing the Strength and Ductility of Fine Structured 2024 Al Alloy by Nano-precipitation, Acta Mater., 2007, 55, p 5822–5832. doi:10.1016/j.actamat.2007.06.043

    Article  Google Scholar 

  9. C. Zhu, A. Ma, J. Jiang, X. Li, D. Song, D. Yang et al., Effect of ECAP Combined Cold Working on Mechanical Properties and Electrical Conductivity of Conform-Produced Cu-Mg Alloys, J. Alloys Compd., 2014, 582, p 135–140. doi:10.1016/j.jallcom.2013.08.007

    Article  Google Scholar 

  10. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, Strength and Ductility of Ultrafine Grained Aluminum and Iron Produced by ARB and Annealing, Scr. Mater., 2002, 47, p 893–899. doi:10.1016/S1359-6462(02)00282-8

    Article  Google Scholar 

  11. Y.M. Wang, E. Ma, and M.W. Chen, Enhanced Tensile Ductility and Toughness in Nanostructured Cu, Appl. Phys. Lett., 2002, 80, p 2395. doi:10.1063/1.1465528

    Article  Google Scholar 

  12. C.J. Luis, R. Luri, J. León, I. Puertas, D. Salcedo, and I. Pérez. Development of Nanostructured AA3103 by Equal Channel Angular Pressing and Thermal Treatments 2014, 2014

  13. B. Gopi and N.N. Krishna, Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si Alloy. World Acad. Sci. Eng. Technol., 2012, 61, p. 731–735

    Google Scholar 

  14. S. Farè, N. Lecis, and M. Vedani, Aging Behaviour of Al-Mg-Si Alloys Subjected to Severe Plastic Deformation by ECAP and Cold Asymmetric Rolling, J. Metall., 2011, 2011, p 1–8. doi:10.1155/2011/959643

    Article  Google Scholar 

  15. H. Miura, T. Sakai, S. Maruoka, and J.J. Jonas, Production of Recrystallized Nano-grains in a Fine-grained Cu-Zn Alloy, Philos. Mag. Lett., 2010, 90, p 93–101. doi:10.1080/09500830903459648

    Article  Google Scholar 

  16. K. Neishi, T. Uchida, A. Yamauchi, K. Nakamura, Z. Horita, and T.G. Langdon, Low-Temperature Superplasticity in a Cu-Zn-Sn Alloy Processed by Severe Plastic Deformation, Mater. Sci. Eng. A, 2001, 307, p 23–28

    Article  Google Scholar 

  17. A. Gaganov, J. Freudenberger, E. Botcharova, and L. Schultz, Effect of Zr Additions on the Microstructure, and the Mechanical and Electrical Properties of Cu-7 wt%Ag Alloys, Mater. Sci. Eng. A, 2006, 437, p 313–322. doi:10.1016/j.msea.2006.07.121

    Article  Google Scholar 

  18. X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu et al., High Strength and Utilizable Ductility of Bulk Ultrafine-Grained Cu-Al Alloys, Appl. Phys. Lett., 2008, 92, p 201915. doi:10.1063/1.2936306

    Article  Google Scholar 

  19. H. Bahmanpour, A. Kauffmann, M.S. Khoshkhoo, K.M. Youssef, S. Mula, J. Freudenberger et al., Effect of Stacking Fault Energy on Deformation Behavior of Cryo-Rolled Copper and Copper Alloys, Mater. Sci. Eng. A, 2011, 529, p 230–236. doi:10.1016/j.msea.2011.09.022

    Article  Google Scholar 

  20. V.S. Sarma, K. Sivaprasad, D. Sturm, and M. Heilmaier, Microstructure and Mechanical Properties of Ultra Fine Grained Cu-Zn and Cu-Al Alloys Produced by Cryorolling and Annealing, Mater. Sci. Eng. A, 2008, 489, p 253–258

    Article  Google Scholar 

  21. D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia, Al-Mg Alloy Engineered with Bimodal Grain Size for High Strength and Increased Ductility, Scr. Mater., 2003, 49, p 297–302. doi:10.1016/S1359-6462(03)00283-5

    Article  Google Scholar 

  22. Y.M. Wang and E. Ma, Three Strategies to Achieve Uniform Tensile Deformation in a Nanostructured Metal, Acta Mater., 2004, 52, p 1699–1709. doi:10.1016/j.actamat.2003.12.022

    Article  Google Scholar 

  23. Y. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li et al., High Tensile Ductility and Strength in Bulk Nanostructured Nickel, Adv. Mater., 2008, 20, p 3028–3033. doi:10.1002/adma.200800214

    Article  Google Scholar 

  24. E. Ma, Eight Routes to Improve the Tensile Ductility of Bulk Nanostructured Metals and Alloys, JOM, 2006, 58, p 49–53. doi:10.1007/s11837-006-0215-5

    Article  Google Scholar 

  25. Y.G. Ko, S. Namgung, B.U. Lee, and D.H. Shin, Mechanical and Electrical Responses of Nanostructured Cu-3wt%Ag Alloy Fabricated by ECAP and Cold Rolling, J. Alloys Compd., 2010, 504, p S448–S451. doi:10.1016/j.jallcom.2010.02.198

    Article  Google Scholar 

  26. Z. Horita, K. Ohashi, T. Fujita, K. Kaneko, and T.G. Langdon, Achieving High Strength and High Ductility in Precipitation-Hardened Alloys, Adv. Mater., 2005, 17, p 1599–1602. doi:10.1002/adma.200500069

    Article  Google Scholar 

  27. S. Nagarjuna, U. Chinta Babu, and P. Ghosal, Effect of Cryo-Rolling on Age Hardening of Cu-1.5Ti Alloy, Mater. Sci. Eng. A, 2008, 491, p 331–337. doi:10.1016/j.msea.2008.02.014

    Article  Google Scholar 

  28. T. Akita, K. Kitagawa, K. Kita, M. Gotoh, Y. Hirose, and N. Tsuji, High Performance of Mechanical and Electrical Properties of Cu-Cr-Zr Alloy Sheets Produced by ARB Process and Additional Thermo-Mechanical Treatment, J. Phys. Conf. Ser., 2010, 240, p 012119. doi:10.1088/1742-6596/240/1/012119

    Article  Google Scholar 

  29. K. Sitarama Raju, V. Subramanya Sarma, A. Kauffmann, Z. Hegedus, J. Gubicza, M. Peterlechner et al., High Strength and Ductile Ultrafine-Grained Cu-Ag Alloy Through Bimodal Grain Size, Dislocation Density and Solute Distribution, Acta Mater., 2013, 61, p 228–238. doi:10.1016/j.actamat.2012.09.053

    Article  Google Scholar 

  30. X.-Z. Zhou and Y.-C. Su, A Novel Cu-Ni-Zn-Al Alloy with High Strength Through Precipitation Hardening, Mater. Sci. Eng. A, 2010, 527, p 5153–5156. doi:10.1016/j.msea.2010.04.089

    Article  Google Scholar 

  31. N. Takata, Y. Ohtake, K. Kita, K. Kitagawa, and N. Tsuji, Increasing the Ductility of Ultrafine-Grained Copper Alloy by Introducing Fine Precipitates, Scr. Mater., 2009, 60, p 590–593. doi:10.1016/j.scriptamat.2008.12.018

    Article  Google Scholar 

  32. S.C. Krishna, K. Thomas Tharian, B. Pant, and R.S. Kottada, Age-Hardening Characteristics of Cu-3Ag-0.5Zr Alloy, Mater. Sci. Forum, 2012, 710, p 563–568. doi:10.4028/www.scientific.net/MSF.710.563

    Article  Google Scholar 

  33. H.C. Groh, D.L. Ellis, and W.S. Loewenthal, Comparison of GRCop-84 to other Cu Alloys with High Thermal Conductivities, J. Mater. Eng. Perform., 2007, 17, p 594–606. doi:10.1007/s11665-007-9175-3

    Article  Google Scholar 

  34. S.C. Krishna, N.K. Gangwar, A.K. Jha, B. Pant, and K.M. George, Enhanced Strength in Cu-Ag-Zr Alloy by Combination of Cold Working and Aging, J. Mater. Eng. Perform., 2014, 23, p 1458–1464. doi:10.1007/s11665-014-0882-2

    Article  Google Scholar 

  35. S.C. Krishna, K.T. Tharian, B. Pant, and R.S. Kottada, Microstructure and Mechanical Properties of Cu-Ag-Zr Alloy, J. Mater. Eng. Perform., 2013, 22, p 3884–3889. doi:10.1007/s11665-013-0659-z

    Article  Google Scholar 

  36. S.C. Krishna, N.K. Gangwar, A.K. Jha, B. Pant, and K.M. George, Properties and Strengthening Mechanisms in Cold-Rolled and Aged Cu-3Ag-0.5Zr Alloy, Metallogr. Microstruct. Anal., 2014, 3, p 323–327. doi:10.1007/s13632-014-0147-3

    Article  Google Scholar 

  37. J. Gubicza, N.Q. Chinh, G. Krállics, I. Schiller, and T. Ungár, Microstructure of Ultrafine-Grained FCC Metals Produced by Severe Plastic Deformation, Curr. Appl. Phys., 2006, 6, p 194–199. doi:10.1016/j.cap.2005.07.039

    Article  Google Scholar 

  38. J. Gallego, T.S. Pinheiro, R.Z. Valiev, V. Polyakova, C. Bolfarini, C.S. Kiminami et al., Microstructural Characterization of Ti-6Al-7Nb Alloy After Severe Plastic Deformation, Mater. Res., 2012, 15, p 786–791. doi:10.1590/S1516-14392012005000100

    Article  Google Scholar 

  39. L. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, Science, 2004, 304, p 422–426. doi:10.1126/science.1092905

    Article  Google Scholar 

  40. J.B. Singh, R. Kapoor, A. Durga-Prasad, and J.K. Chakravartty, Comparison of Microstructures and Strengths of an Al-2.5Mg Alloy Subjected to Severe Plastic Deformation at Room and Liquid Nitrogen Temperatures, Mater Sci Eng A, 2013, 581, p 26–30. doi:10.1016/j.msea.2013.05.073

    Article  Google Scholar 

  41. M. Furukawa, Z. Horita, and T.G. Langdon, Developing Ultrafine Grain Sizes Using Severe Plastic Deformation, 2001, doi:10.1002/1527-2648(200103)3:3<121::AID-ADEM121>3.0.CO;2-V

    Google Scholar 

  42. M. Furukawa, Z. Horita, M. Nemoto, and T. Langdon, The Use of Severe Plastic Deformation for Microstructural Control, Mater. Sci. Eng. A, 2002, 324, p 82–89. doi:10.1016/S0921-5093(01)01288-6

    Article  Google Scholar 

  43. Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, and T.G. Langdon, Tailoring Stacking Fault Energy for High Ductility and High Strength in Ultrafine grained Cu and Its Alloy, Appl. Phys. Lett., 2006, 89, p 121906. doi:10.1063/1.2356310

    Article  Google Scholar 

  44. S.C. Krishna, G.S. Rao, A.K. Jha, B. Pant, and K.M. George, Analysis of Phases and Their Role in Strengthening of Cu-Cr-Zr-Ti Alloy. J. Mater. Eng. Perform., 2015, 24, p 2341–2345. doi:10.1007/s11665-015-1516-Z

    Article  Google Scholar 

  45. S.C. Krishna, A.K. Jha, B. Pant, and K.M. George, Achieving Higher Strength in Cu–Ag–Zr Alloy by Warm/Hot Rolling. Rare Met., 2015. doi:10.1007/s12598-015-0502-9

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. K. Sivan Director, Vikram Sarabhai Space Centre, Trivandrum, India, for his kind permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chenna Krishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, S.C., Chawake, N., Kottada, R.S. et al. High Strength and Good Ductility in Cu-3Ag-0.5Zr Alloy by Cryo-Rolling and Aging. J. of Materi Eng and Perform 26, 350–357 (2017). https://doi.org/10.1007/s11665-016-2419-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2419-3

Keywords

Navigation