Skip to main content
Log in

The Passive Film Characteristics of Cold Deformed Pure Copper

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, the effect of cold deformation on the electrochemical and passive behaviors of pure copper in 0.01 M NaOH solution was investigated. The dislocation density in cold deformation was calculated using a recently developed JAVA-based software, materials analysis using diffraction, based on Rietveld’s whole x-ray pattern fitting methodology. At the thickness reduction of 70%, the microhardness measured as 125.30 HV, which is 1.56 times than that in the annealed pure copper (80.25 HV). Potentiodynamic polarization plots and electrochemical impedance spectroscopy measurements showed that increasing the cold deformation offers better conditions for forming the passive films. In the Mott-Schottky analysis, no evidence for n-type behavior was obtained which indicates that the oxygen vacancies and the copper interstitials did not have any significant population density in the passive films. Also, this analysis revealed that with increasing cold deformation, the acceptor density of the passive films decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.R. Ashtiani, M.H. Parsa, and H. Bisadi, Effects of Initial Grain Size on hot Deformation Behavior of Commercial Pure Aluminum, Mater. Des., 2012, 42, p 478–485

    Article  Google Scholar 

  2. R.B. Hmida, S. Thibaud, A. Gilbin, and F. Richard, Influence of the Initial Grain Size in Single Point Incremental Forming Process for Thin Sheets Metal and Microparts: Experimental Investigations, Mater. Des., 2013, 45, p 155–165

    Article  Google Scholar 

  3. Y. Yang, Z. Zhang, X. Li, Q. Wang, and Y. Zhang, The Effects of Grain Size on the Hot Deformation and Processing Map for 7075 Aluminum Alloy, Mater. Des., 2013, 51, p 592–597

    Article  Google Scholar 

  4. L. Karthikeyan and V.S. Kumar, Relationship Between Process Parameters and Mechanical Properties of Friction Stir Processed AA6063-T6 Aluminum Alloy, Mater. Des., 2011, 32, p 3085–3091

    Article  Google Scholar 

  5. S.W. Xu, K. Oh-ishi, S. Kamado, H. Takahashi, and T. Homma, Effects of Different Cooling Rates During Two Casting Processes on the Microstructures and Mechanical Properties of Extruded Mg–Al–Ca–Mn Alloy, Mater. Sci. Eng. A, 2012, 542, p 71–78

    Article  Google Scholar 

  6. S. Pang, G. Wu, W. Liu, M. Sun, Y. Zhang, Z. Liu, and W. Ding, Effect of Cooling Rate on the Microstructure and Mechanical Properties of Sand-Casting Mg–10Gd–3Y–0.5Zr Magnesium Alloy, Mater. Sci. Eng. A, 2013, 562, p 152–160

    Article  Google Scholar 

  7. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–189

    Article  Google Scholar 

  8. N.R. Kumar, J.J. Blandin, C. Desrayaud, F. Montheillet, and M. Suéry, Grain Refinement in AZ91 Magnesium Alloy During Thermomechanical Processing, Mater. Sci. Eng. A, 2003, 359, p 150–157

    Article  Google Scholar 

  9. J.A. Wert, N.E. Paton, C.H. Hamilton, and M.W. Mahoney, Grain Refinement in 7075 Aluminum by Thermomechanical Processing, Metall. Trans. A, 1981, 12, p 1267–1276

    Article  Google Scholar 

  10. Y.F. Shen, C.H. Qiu, L. Wang, X. Sun, X.M. Zhao, and L. Zuo, Effects of Cold Rolling on Microstructure and Mechanical Properties of Fe–30Mn–3Si–4Al–0.093C TWIP Steel, Mater. Sci. Eng. A, 2013, 561, p 329–337

    Article  Google Scholar 

  11. R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51, p 881–981

    Article  Google Scholar 

  12. A. Hassani and M. Zabihi, High Strain Rate Superplasticity in a Nano-Structured Al–Mg/SiCP Composite Severely Deformed by Equal Channel Angular Extrusion, Mater. Des., 2012, 39, p 140–150

    Article  Google Scholar 

  13. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel Ultra-High Straining Process for Bulk Materials Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47(2), p 579–583

    Article  Google Scholar 

  14. S. Kaneko, K. Fukuda, H. Utsunomiya, T. Sakai, Y. Saito, and N. Furushiro, Ultra Grain Refinement of Aluminium 1100 by ARB with Cross Rolling, Mater. Sci. Forum, 2003, 426–432, p 2649–2654

    Article  Google Scholar 

  15. N.A. Smirnova, V.I. Levit, V.I. Pilyugin, R.I. Kuznetsov, L.S. Davydova, and V.A. Sazonova, Evolution of Structure of fcc Single Crystals During Strong Plastic Deformation, Phys. Met. Metallogr., 1989, 61(6), p 127–134

    Google Scholar 

  16. V. Varyukhin, Y. Beygelzimer, R. Kulagin, O. Prokof’eva, and A. Reshetov, Twist Extrusion: Fundamentals and Applications, Mater. Sci. Forum, 2011, 667–669, p 31–37

    Google Scholar 

  17. S. Amirkhanlou, M. Askarian, M. Ketabchi, N. Azimi, N. Parvin, and F. Carreño, Gradual Formation of Nano/Ultrafine Structure Under Accumulative Press Bonding (APB) Process, Mater. Charact., 2015, 109, p 57–65

    Article  Google Scholar 

  18. Z.W. Wu, J. Chen, N. Piao, C. Sun, W. Hassan, X.H. Zhang, and Y.J. Xie, Electrochemical Corrosion Behavior of Bulk Ultra-Fine Grained Fe–Ni–Cr Alloy, Trans. Nonferrous Metal. Soc. China, 2014, 24, p 1989–1994

    Article  Google Scholar 

  19. A. Di Schino and J. Kenny, Effect of Grain Size on the Corrosion Resistance of a High Nitrogen–Low Nickel Austenitic Stainless Steel, J. Mater. Sci. Lett., 2002, 21, p 1969–1971

    Article  Google Scholar 

  20. S.V. Phadnis, A.K. Satpati, K.P. Muthe, J.C. Vyas, and R.I. Sundaresan, Comparison of Rolled and Heat Treated SS304 in Chloride Solution Using Electrochemical and XPS Techniques, Corros. Sci., 2003, 45, p 2467–2483

    Article  Google Scholar 

  21. D. Nakhaie and M.H. Moayed, Pitting Corrosion of Cold Rolled Solution Treated 17-4PH Stainless Steel, Corros. Sci., 2014, 80, p 290–298

    Article  Google Scholar 

  22. A. Fattah-Alhosseini and S. Vafaeian, Comparison of Electrochemical Behavior Between Coarse Grained and Fine-Grained AISI, 430 Ferritic Stainless Steel by Mott–Schottky Analysis and EIS Measurements, J. Alloy. Compd., 2015, 639, p 301–307

    Article  Google Scholar 

  23. A. Fattah-Alhosseini and S. Vafaeian, Influence of Grain Refinement on the Electrochemical Behavior of AISI, 430 Ferritic Stainless Steel in an Alkaline Solution, Appl. Surf. Sci., 2016, 360, p 921–928

    Article  Google Scholar 

  24. K. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: A Review, Corrosion, 2010, 66, p 75005–75013

    Article  Google Scholar 

  25. L. Liu, Y. Li, and F. Wang, Electrochemical Corrosion Behavior of Nanocrystalline Materials—A Review, J. Mater. Sci. Technol., 2010, 26, p 1–14

    Article  Google Scholar 

  26. A. Fattah-alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi, and N. Attarzadeh, The Semiconducting Properties of Passive Films Formed on AISI, 316 L and AISI, 321 Stainless Steels: A Test of the Point Defect Model (PDM), Corros. Sci., 2011, 53, p 3186–3192

    Article  Google Scholar 

  27. A. Fattah-Alhosseini and S.O. Gashti, Passive Behavior of Ultra-Fine-Grained 1050 Aluminum Alloy Produced by Accumulative Roll Bonding in a Borate Buffer Solution, Acta Metall. Sin. (Engl. Lett.), 2015, 28, p 1222–1229

    Article  Google Scholar 

  28. A. Fattah-alhosseini and S.O. Gashti, Corrosion Behavior of Ultra-Fine Grained 1050 Aluminum Alloy Fabricated by ARB Process in a Buffer Borate Solution, J. Mater. Eng. Perform., 2015, 24, p 3386–3393

    Article  Google Scholar 

  29. A. Fattah-alhosseini and O. Imantalab, Passivation Behavior of Ultrafine-Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process, Metall. Mater. Trans. A, 2016, 47, p 572–580

    Article  Google Scholar 

  30. O. Imantalab and A. Fattah-alhosseini, Electrochemical and Passive Behaviors of Pure Copper Fabricated by Accumulative Roll-Bonding (ARB) Process, J. Mater. Eng. Perform., 2015, 24, p 2579–2585

    Article  Google Scholar 

  31. A. Fattah-alhosseini and O. Imantalab, Effect of Accumulative Roll Bonding Process on the Electrochemical Behavior of Pure Copper, J. Alloy. Compd., 2015, 632, p 48–52

    Article  Google Scholar 

  32. P. Sahu, M. De, and S. Kajiwara, Microstructural Characterization of Fe–Mn–C Martensites Athermally Transformed at Low Temperature by Rietveld Method, Mater. Sci. Eng. A, 2002, 333, p 10–23

    Article  Google Scholar 

  33. P. Sahu, M. De, and S. Kajiwara, Microstructural Characterization of Stress-Induced Martensites Evolved at Low Temperature in Deformed Powders of Fe–Mn–C Alloys by the Rietveld Method, J. Alloy. Compd., 2002, 346, p 158–169

    Article  Google Scholar 

  34. M. Naseri, A. Hassani, and M. Tajally, Fabrication and Characterization of Hybrid Composite Strips with Homogeneously Dispersed Ceramic Particles by Severe Plastic Deformation, Ceram. Int., 2015, 41, p 3952–3960

    Article  Google Scholar 

  35. M. Naseri, A. Hassani, and M. Tajally, An Alternative Method for Manufacturing Al/B4C/SiC Hybrid Composite Strips by Cross Accumulative Roll Bonding (CARB) Process, Ceram. Int., 2015, 41, p 13461–13469

    Article  Google Scholar 

  36. R. Jamaati, M. Naseri, and M.R. Toroghinejad, Wear Behavior of Nanostructured Al/Al2O3 Composite Fabricated Via Accumulative Roll Bonding (ARB) Process, Mater. Des., 2014, 59, p 540–549

    Article  Google Scholar 

  37. M. Naseri, M. Reihanian, and E. Borhani, A New Strategy to Simultaneous Increase in the Strength and Ductility of AA2024 Alloy Via Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A, 2016, 656, p 12–20

    Article  Google Scholar 

  38. R. Jamaati, M.R. Toroghinejad, and H. Edris, Effect of Stacking Fault Energy on Nanostructure Formation Under Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng. A, 2013, 578, p 191–196

    Article  Google Scholar 

  39. A. Kauffmann, J. Freudenberger, D. Geissler, S. Yin, W. Schillinger, V. Subramanya Sarma, H. Bahmanpour, R. Scattergood, M.S. Khoshkhoo, H. Wendrock, C.C. Koch, J. Eckert, and L. Schultz, Severe Deformation Twinning in Pure Copper by Cryogenic Wire Drawing, Acta Mater., 2011, 59, p 7816–7823

    Article  Google Scholar 

  40. H. Maleki-Ghaleh, K. Hajizadeh, A. Hadjizadeh, M.S. Shakeri, S. Ghobadi Alamdari, S. Masoudfar, E. Aghaie, M. Javidi, J. Zdunek, and K.J. Kurzydlowski, Electrochemical and Cellular Behavior of Ultrafine-Grained Titanium In Vitro, Mater. Sci. Eng. C. Mater. Biol. Appl., 2014, 39, p 299–304

    Article  Google Scholar 

  41. A. Fattah-alhosseini and S. Vafaeian, Passivation Behavior of a Ferritic Stainless Steel in Concentrated Alkaline Solutions, J. Mater. Res. Technol., 2015, 4, p 423–428

    Article  Google Scholar 

  42. L. Jinlong and L. Hongyun, Effect of Temperature and Chloride Ion Concentration on Corrosion of Passive Films on Nano/Ultrafine Grained Stainless Steels, J. Mater. Eng. Perform., 2014, 23, p 4223–4229

    Article  Google Scholar 

  43. H. Luo, S. Gao, C. Dong, and X. Li, Characterization of Electrochemical and Passive Behaviour of Alloy 59 in Acid Solution, Electrochim. Acta, 2014, 135, p 412–419

    Article  Google Scholar 

  44. L. Hamadou, L. Aïnouche, A. Kadri, S.A.A. Yahia, and N. Benbrahim, Electrochemical Impedance Spectroscopy Study of Thermally Grown Oxides Exhibiting Constant Phase Element Behaviour, Electrochim. Acta, 2013, 113, p 99–108

    Article  Google Scholar 

  45. H. Wu, Y. Wang, Q. Zhong, M. Sheng, H. Du, and Z. Li, The Semi-conductor Property and Corrosion Resistance of Passive Film on Electroplated Ni and Cu–Ni Alloys, J. Electroanal. Chem., 2011, 663, p 59–66

    Article  Google Scholar 

  46. B. Zhang, Y. Li, and F. Wang, Electrochemical Corrosion Behaviour of Microcrystalline Aluminium in Acidic Solutions, Corros. Sci., 2007, 49, p 2071–2082

    Article  Google Scholar 

  47. Q.J. Wang, M.S. Zheng, and J.W. Zhu, Semi-conductive Properties of Passive Films Formed on Copper in Chromate Solutions, Thin Solid Films, 2009, 517, p 1995–1999

    Article  Google Scholar 

  48. C. Escrivà-Cerdán, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, R. Akid, and J. Walton, Effect of Temperature on passive Film Formation of UNS N08031 Cr–Ni Alloy in Phosphoric Acid Contaminated with Different Aggressive Anions, Electrochim. Acta, 2013, 111, p 552–561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Imantalab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattah-Alhosseini, A., Naseri, M., Imantalab, O. et al. The Passive Film Characteristics of Cold Deformed Pure Copper. J. of Materi Eng and Perform 25, 4741–4749 (2016). https://doi.org/10.1007/s11665-016-2352-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2352-5

Keywords

Navigation