Skip to main content
Log in

Dynamic Deformation Behaviors of an In Situ Ti-Based Metallic Glass Matrix Composite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Quasi-static and dynamic deformation behaviors, fracture characteristics, and microstructural evolution of an in situ dendrite-reinforced metallic glass matrix composite: Ti50Zr20V10Cu5Be15 within a wide range of strain rates are investigated. Compared with the quasi-static compression, the yielding stress increases, but the macroscopic plasticity significantly decreases upon dynamic compression. The effects of the strain rate on strain hardening upon quasi-static loading and flow stress upon dynamic loading are evaluated, respectively. The Zerilli-Armstrong (Z-A) model based on dendrite-dominated mechanism is employed to further uncover the dependence of the yielding stress on the strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.W. Chen, Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility, Annu. Rev. Mater. Res., 2008, 38, p 445–469

    Article  Google Scholar 

  2. M.K. Miller and P.K. Liaw, Bulk Metallic Glasses, Springer, New York, 2007

    Google Scholar 

  3. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Mechanical Behavior of Amorphous Alloys, Acta Mater., 2007, 55, p 4067–4109

    Article  Google Scholar 

  4. C.C. Hays, C.P. Kim, and W.L. Johnson, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing In Situ Formed Ductile Phase Dendrite Dispersions, Phys. Rev. Lett., 2000, 84, p 2901–2904

    Article  Google Scholar 

  5. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson, Designing Metallic Glass Matrix Composites with High Toughness and Tensile Ductility, Nature, 2008, 451, p 1085–1089

    Article  Google Scholar 

  6. R.D. Conner, R.B. Dandliker, and W.L. Johnson, Mechanical Properties of Tungsten and Steel Fiber Reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 Metallic Glass Matrix Composites, Acta Mater., 1998, 46, p 6089–6102

    Article  Google Scholar 

  7. P. Wadhwa, J. Heinrich, and R. Busch, Processing of Copper Fiber-Reinforced Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 Bulk Metallic Glass Composites, Scr. Mater., 2007, 56, p 73–76

    Article  Google Scholar 

  8. M. Calin, J. Eckert, and L. Schultz, Improved Mechanical Behavior of Cu-Ti-Based Bulk Metallic Glass by In Situ Formation of Nanoscale Precipitates, Scr. Mater., 2003, 48, p 653–658

    Article  Google Scholar 

  9. J.W. Qiao, H.L. Jia, and P.K. Liaw, Metallic Glass Matrix Composites, Mater. Sci. Eng. R, 2016, 100, p 1–69

    Article  Google Scholar 

  10. J.H. Chen, M.Q. Jiang, Y. Chen, and L.H. Dai, Strain Rate Dependent Shear Banding Behavior of a Zr-Based Bulk Metallic Glass Composite, Mater. Sci. Eng. A, 2013, 576, p 134–139

    Article  Google Scholar 

  11. M.Y. Chu, Z.M. Jiao, Z.H. Wang, Y.S. Wang, J.H. Zhang, H.J. Yang, and J.W. Qiao, Different Deformation Behaviors of Two In-Situ Ti-Based Metallic Glass Matrix Composites Upon Quasi-Static and Dynamic Compressions, Mater. Sci. Eng. A, 2015, 639, p 717–723

    Article  Google Scholar 

  12. J. Xu, L.L. Ma, Y.F. Xue, Z.H. Nie, Y.H. Long, L. Wang, and Y.B. Deng, Work-Hardening Behavior, Strain Rate Sensitivity, and Failure Behavior of In Situ CuZr-Based Metallic Glass Matrix Composite, J. Mater. Sci., 2016, 51, p 5992–6001

    Article  Google Scholar 

  13. J.W. Qiao, M.Y. Chu, L. Cheng, H.Y. Ye, H.J. Yang, S.G. Ma, and Z.H. Wang, Plastic Flows of In-Situ Metallic Glass Matrix Composites Upon Dynamic Loading, Mater. Lett., 2014, 119, p 92–95

    Article  Google Scholar 

  14. Y.S. Wang, G.J. Hao, R. Ma, Y. Zhang, J.P. Lin, Z.H. Wang, and J.W. Qiao, Quasi-Static and Dynamic Compression Behaviors of Metallic Glass Matrix Composites, Intermetallics, 2015, 60, p 66–71

    Article  Google Scholar 

  15. J.W. Qiao, H.Y. Ye, Y.S. Wang, S. Pauly, H.J. Yang, and Z.H. Wang, Distinguished Work-Hardening Capacity of a Ti-Based Metallic Glass Matrix Composite Upon Dynamic Loading, Mater. Sci. Eng. A, 2013, 585, p 277–280

    Article  Google Scholar 

  16. J. Bai, J.S. Li, J. Wang, J. Cui, L.Y. Li, H.C. Kou, and P.K. Liaw, Strain-Rate-Dependent Deformation Behavior in a Ti-Based Bulk Metallic Glass Composite Upon Dynamic Deformation, J. Alloys Compd., 2015, 639, p 131–138

    Article  Google Scholar 

  17. W.W. Chen and B. Song, Split Hopkinson (Kolsky) Bar: Design, Testing, and Applications, Mechanical Engineering Series Springer, New York, 2011

    Book  Google Scholar 

  18. R.L. Narayan, P.S. Singh, D.C. Hofmann, N. Hutchinson, K.M. Flores, and U. Ramamurty, On the Microstructure-Tensile Property Correlations in Bulk Metallic Glass Matrix Composites with Crystalline Dendrites, Acta Mater., 2012, 60, p 5089–5100

    Article  Google Scholar 

  19. F.F. Wu, S.T. Li, G.A. Zhang, X.F. Wu, and P. Lin, Plastic Stability of Metallic Glass Composites Under Tension, Appl. Phys. Lett., 2013, 103, p 151910

    Article  Google Scholar 

  20. D. Gao, C.H. Guo, F.C. Jiang, and G. Chen, The Dynamic Compressive Behavior of Wf/Zr-Based Metallic Glass Composites, Mater. Sci. Eng. A, 2015, 641, p 107–115

    Article  Google Scholar 

  21. W.G. Johnston and J.J. Gilman, Dislocation Velocities, Dislocation Densities, and Plastic Flow in Lithium Fluoride Crystals, J. Appl. Phys., 1959, 30, p 129–144

    Article  Google Scholar 

  22. W.D. Liu and K.X. Liu, Dynamic Behavior of a Zr-Based Metallic Glass at Cryogenic Temperature, Intermetallics, 2011, 19, p 109–112

    Article  Google Scholar 

  23. W. Zheng, Y.J. Huang, and J. Shen, Influence of Strain-Rate on Compressive-Deformation Behavior of a Zr-Cu-Ni-Al Bulk Metallic Glass at Cryogenic Temperature, Mater. Sci. Eng. A, 2011, 528, p 6855–6859

    Article  Google Scholar 

  24. V.C. Nardone and K.M. Prewo, On the Strength of Discontinuous Silicon Carbide Reinforced Aluminum Composites, Scr. Metall., 1986, 20, p 43–48

    Article  Google Scholar 

  25. F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825

    Article  Google Scholar 

Download references

Acknowledgments

J.W.Q. would like to acknowledge the financial support of National Natural Science Foundation of China (No. 51371122), the Program for the Innovative Talents of Higher Learning Institutions of Shanxi (2013), and the Youth Natural Science Foundation of Shanxi Province, China (No. 2015021005), and the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology), and the opening project number is KFJJ16-07M. H.J.Y. would like to acknowledge the financial support from the National Natural Science Foundation of China (No. 51401141), and the Youth Science Foundation of Shanxi Province, China (No. 2014021017-3). Z.H.W. would like to acknowledge the National Natural Science Foundation of China (No. 11390362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Z.M., Wang, Z.H., Wu, R.F. et al. Dynamic Deformation Behaviors of an In Situ Ti-Based Metallic Glass Matrix Composite. J. of Materi Eng and Perform 25, 4729–4734 (2016). https://doi.org/10.1007/s11665-016-2340-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2340-9

Keywords

Navigation