Skip to main content

Advertisement

Log in

The Influence of Thermal Conductivity of Die Material on the Efficiency of Hot-Stamping Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To improve the production efficiency of the hot-stamping process from the perspective of the die materials, a numerical model of a B-pillar component was established to investigate the effects of the thermal conductivity of the die material on the cooling behavior, microstructure, and mechanical evolution of the formed component, as well as the temperature distribution of the die during the hot-stamping process. The results showed that the thermal conductivity of the die material has a more significant influence on the quenching stage than the forming stage. Under the specified simulation and boundary conditions, when the thermal conductivity of the die material improves by 76.23% at 25–300 °C, the maximum cooling rate of the component increases by 48.49% and consequently improves the quenching efficiency of the hot-stamping process by 31.82%. As the thermal conductivity of the die steel increases, the maximum temperature of the die decreases and its temperature uniformity improves. Moreover, to improve the efficiency of the hot-stamping process, steels that possess high thermal conductivity at low temperature ranges are favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. H. Karbasian and A.E. Tekkaya, A Review on Hot Stamping, J. Mater. Process. Tech., 2010, 210, p 2103–2118

    Article  Google Scholar 

  2. R. Neugebauer, F. Schieck, S. Polster, A. Mosel, A. Rautenstrauch, J. Schönherr et al., Press Hardening—An Innovative and Challenging Technology, Arch. Civ. Mech. Eng., 2012, 12, p 113–118

    Article  Google Scholar 

  3. M. Merklein and J. Lechler, Investigation of the Thermo-Mechanical Properties of Hot Stamping Steels, J. Mater. Process. Tech., 2006, 177, p 452–455

    Article  Google Scholar 

  4. K. Ji, O.E. Fakir, H. Gao, and L. Wang, Determination of Heat Transfer Coefficient for Hot Stamping Process, Mater. Today. Proceedings., 2015, 2, p 434–439

    Article  Google Scholar 

  5. C. Lei, J. Cui, Z. Xing, H. Fu, and H. Zhao, Investigation of Cooling Effect of Hot-stamping Dies by Numerical Simulation, Phys. Procedia., 2012, 25, p 118–124

    Article  Google Scholar 

  6. H. Hoffmann, H. So, and H. Steinbeiss, Design of Hot Stamping Tools with Cooling System, Cirp. Ann-Manuf. Techn., 2007, 56, p 269–272

    Article  Google Scholar 

  7. E.J.F.R. Caron, K.J. Daun, and M.A. Wells, Experimental Heat Transfer Coefficient Measurements During Hot Forming Die Quenching of Boron Steel at High Temperatures, Int. J. Heat Mass Transf., 2014, 71, p 396–404

    Article  Google Scholar 

  8. W.S. Lim, H.S. Choi, S.Y. Ahn, and B.M. Kim, Cooling Channel Design of Hot Stamping Tools for Uniform High-Strength Components in Hot Stamping Process, Int. J. Adv. Manuf. Technol., 2014, 70, p 1189–1203

    Article  Google Scholar 

  9. H. Steinbeiss, H. So, T. Michelitsch, and H. Hoffmann, Method for Optimizing the Cooling Design of Hot Stamping Tools, Prod. Eng. Res. Devel., 2007, 1, p 149–155

    Article  Google Scholar 

  10. Y. Xu and Z.D. Shan, Design Parameter Investigation of Cooling Systems for UHSS Hot Stamping Dies, Int. J. Adv. Manuf. Technol., 2014, 70, p 257–262

    Article  Google Scholar 

  11. B. Casas, D. Latre, N. Rodriguez, I. Valls, Tailor Made Tool Materials for the Present and Upcoming Tooling Solutions in Hot Sheet Metal Forming, Luleå, Eds, Sweden, 2008, pp 22–24.

  12. Y. Chang, X. Tang, K. Zhao, P. Hu, and Y. Wu, Investigation of the Factors Influencing the Interfacial Heat Transfer Coefficient in Hot Stamping, J. Mater. Process. Tech., 2016, 228, p 25–33

    Article  Google Scholar 

  13. E. Kaschnitz, P. Hofer, and W. Funk, Thermophysical Properties of a Hot-Work Tool-Steel with High Thermal Conductivity, Int. J. Thermophys., 2013, 34, p 843–850

    Article  Google Scholar 

  14. S. Li, X.C. Wu, S.H. Chen, and J.W. Li, Wear Resistance of H13 and a New Hot-Work Die Steel at High temperature, J. Mater. Eng. Perform., 2016, 25, p 2993–3006

    Article  Google Scholar 

  15. S. Zhu, C. Li, C.H. Su, B. Lin, H. Ban, and R.N. Scripa, Thermal Diffusivity, Thermal Conductivity, and Specific Heat Capacity Measurements of Molten Tellurium, J. Cryst. Growth, 2003, 250, p 269–273

    Article  Google Scholar 

  16. M.J. Peet, H.S. Hasan, and H.K.D.H. Bhadeshia, Prediction of Thermal Conductivity of Steel, Int. J. Heat Mass Transf., 2011, 54, p 2602–2608

    Article  Google Scholar 

  17. Y. Terada, K. Ohkubo, T. Mohri, and T. Suzuki, Effects of Alloying Additions on Thermal Conductivity of Ferritic Iron, ISIJ Int., 2002, 42, p 322–324

    Article  Google Scholar 

  18. M.C. Rukadikar and G. Reddy, Influence of Chemical Composition and Microstructure on Thermal Conductivity of Alloyed Pearlitic Flake Graphite Cast Irons, J. Mater. Sci., 1986, 21, p 4403–4410

    Article  Google Scholar 

  19. W.A. Johnson and R.F. Mehl, Reaction Kinetics in Processes of Nucleation and Growth, Trans. Aime., 1939, 135, p 396–415

    Google Scholar 

  20. M. Avrami, Kinetics of Phase Change. I, General Theory, J. Chem. Phys., 1939, 7, p 1103–1112

    Article  Google Scholar 

  21. L.F. He, G.Q. Zhao, and H.P. Li, Measurement and Analysis of Time-Temperature-Transformation Curves of Boron Steel 22MnB5, Appl. Mech. Mater., 2010, 29–32, p 484–489

    Article  Google Scholar 

  22. H. Li, G. Zhao, and L. He, Finite Element Method Based Simulation Of Stress–Strain Field in the Quenching Process, Mater. Sci. Eng., A, 2008, 478, p 276–290

    Article  Google Scholar 

  23. P. Hu, D. Shi, L. Ying, G. Shen, and W. Liu, The Finite Element Analysis of Ductile Damage During Hot Stamping of 22MnB5 Steel, Mater. Des., 2015, 69, p 141–152

    Article  Google Scholar 

  24. P. Maynier, J. Dollet, and P. Bastien, Prediction of Microstructure Via Empirical Formulas Based on CCT Diagrams, Metallurgical Society AIME., 1978, 2, p 163–178

    Google Scholar 

  25. J. Cui, C. Lei, Z. Xing, C. Li, and S. Ma, Predictions of the Mechanical Properties And Microstructure Evolution of High Strength Steel in Hot Stamping, J. Mater. Eng. Perform., 2012, 21, p 2244–2254

    Article  Google Scholar 

  26. M. Merklein and J. Lechler, Determination of Material and Process Characteristics for Hot Stamping Processes Of Quenchenable Ultra High Strength Steels with Respect to a FE-Based Process Design, SAE. Int. J. Mater. Manuf., 2008, 1, p 411–426

    Article  Google Scholar 

  27. C. Wang, H. Zhou, P.Y. Lin, N. Sun, Q. Guo, and P. Zhang, The Thermal Fatigue Resistance of Vermicular Cast Iron Coupling with H13 Steel Units by Cast-in Process, Mater. Des., 2010, 31, p 3442–3448

    Article  Google Scholar 

  28. D. Klobčar, J. Tušek, and B. Taljat, Thermal Fatigue of Materials for Die-Casting Tooling, Mater. Sci. Eng., A, 2008, 472, p 198–207

    Article  Google Scholar 

  29. A. Srivastava, V. Joshi, and R. Shivpuri, Computer Modeling and Prediction of Thermal Fatigue Cracking in Die-Casting Tooling, Wear, 2004, 256, p 38–43

    Article  Google Scholar 

  30. E. Paffumi, K.F. Nilsson, and Z. Szaraz, Experimental and Numerical Assessment of Thermal Fatigue in 316 Austenitic Steel Pipes, Eng. Fail. Anal., 2015, 47, p 312–327

    Article  Google Scholar 

  31. J. Sjöström and J. Bergström, Thermal Fatigue Testing of Chromium Martensitic Hot-Work Tool Steel After Different Austenitizing Treatments, J. Mater. Process. Tech., 2004, 153–154, p 1089–1096

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant Nos. 51401117 and 51171104) and Innovation Foundation of Shanghai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhou, L., Wu, X. et al. The Influence of Thermal Conductivity of Die Material on the Efficiency of Hot-Stamping Process. J. of Materi Eng and Perform 25, 4848–4867 (2016). https://doi.org/10.1007/s11665-016-2332-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2332-9

Keywords

Navigation