Skip to main content
Log in

Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, nanoindentation tests with continuous stiffness measurement technique were measured to investigate the deformation behavior of a high-entropy alloy AlCoCrFeNi under different indentation strain rates at room temperature. Results suggest that the creep behavior exhibits remarkable strain rate dependence. In-situ scanning images showed a conspicuous pileup around the indents, indicating that an extremely localized plastic deformation occurred during the nanoindentation. Under different strain rates, elastic modulus basically remains unchanged, while the hardness decreases with increasing indentation depth due to the indentation size effect. Furthermore, the modulus and hardness of AlCoCrFeNi HEAs are greater than that of the Al x CoCrFeNi (x = 0.3,0.5) at the strain rate of 0.2 s−1 due to its higher negative enthalpy of mixing related to the atomic binding force, and the solid solution strengthening induced by the lattice distortion, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid Solution Alloys of AlCoCrFeNiTix with Excellent Room-Temperature Mechanical Properties, Appl. Phys. Lett., 2007, 90, p 181904

    Article  Google Scholar 

  2. C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun, Wear Resistance and High-Temperature Compression Strength of Fcc CuCoNiCrAl0.5Fe Alloy with Boron Addition, Metall. Mater. Trans. A, 2004, 35, p 1465

    Article  Google Scholar 

  3. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater., 2008, 10, p 534

    Article  Google Scholar 

  4. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1

    Article  Google Scholar 

  5. J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, High-Entropy Alloys—a New era of Exploitation, Mater. Sci. Forum, 2007, 560, p 1

    Article  Google Scholar 

  6. P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen, Multi-principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating, Adv. Eng. Mater., 2004, 6, p 74

    Article  Google Scholar 

  7. M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk, High-Entropy Alloys in Hexagonal Close-Packed Structure, Metall. Meter. Trans. A., 2015, doi:10.1007/s11661-015-3091-1

    Google Scholar 

  8. J.W. Yeh, S.K. Chen, J.Y. Gain, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multi Principal Metallic Elements, Metall. Meter. Trans. A., 2004, 35A, p 2535

    Google Scholar 

  9. R.A. Swalin, Thermodynamics of Solids, 2nd ed., E. Burke, B. Charmers, J.A. Krumhansl, Eds., Wiley, New York, 1991, p 21.

  10. F.R. de Boer, Cohesion in Metals: Transition Metal Alloys, F.R. de Boer and D.G. pettifor, Eds. Elsevier, New York, 1988.

  11. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Microstructure and Compressive Properties of Multicomponent Alx(TiVCrMnFeCoNiCu)100-x High-Entropy Alloys, Mater. Sci. Eng. A, 2007, 454-455, p 260

    Article  Google Scholar 

  12. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu, Microstructure and Compressive Properties of AlCrFeCoNi High Entropy Alloy, Mater. Sci. Eng. A, 2008, 491, p 154

    Article  Google Scholar 

  13. T.T. Shun and Y.C. Du, Microstructure and Tensile Behaviors of FCC Al0.3CoCrFeNi High Entropy Alloy, J. Alloys Compd., 2009, 479, p 157

    Article  Google Scholar 

  14. V. Dolique, A.L. Thomann, P. Brault, Y. Tessier, and P. Gillon, Thermal Stability of AlCoCrCuFeNi High Entropy Alloy Thin Films Studied by In-Situ XRD Analysis, Surf. Coat. Technol., 1989, 2010, p 204

    Google Scholar 

  15. Y. Ma, G.J. Peng, D.H. Wen, and T.H. Zhang, Nanoindentation Creep Behavior in a CoCrFeCuNi High-Entropy Alloy Film with Two Different Structure States, Mater. Sci. Eng. A, 2015, 621, p 111

    Article  Google Scholar 

  16. B.S. Murty, J.W. Yeh, and S. Ranganathan, High Entropy Alloys, Butterworth-Heinemann, London, 2014

    Book  Google Scholar 

  17. D.B. Miracle, Critical Assessment 14: High Entropy Alloys and Their Development as Structural Materials, Mater. Sci. Technol, 2015, 31, p 1244

    Article  Google Scholar 

  18. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys, Intermetallics, 2012, 26, p 44

    Article  Google Scholar 

  19. Z.M. Jiao, S.G. Ma, G.Z. Yuan, Z.H. Wang, and H.J. Qiao, Plastic Deformation of Al0.3CoCrFeNi and AlCoCrFeNi High-Entropy Alloys Under Nanoindentation, J. Mater. Eng. Perform., 2015, 24(8), p 3077

    Article  Google Scholar 

  20. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564

    Article  Google Scholar 

  21. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3

    Article  Google Scholar 

  22. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh, Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation, Acta Mater., 2001, 49, p 3899

    Article  Google Scholar 

  23. S. Suresh and A.E. Giannakopoulos, A New Method for Estimating Residual Stresses by Instrumented Sharp Indentation, Acta Mater., 1998, 46, p 5755

    Article  Google Scholar 

  24. B.N. Lucas and W.C. Oliver, Indentation Power-Law Creep of High-Purity Indium, Metall. Mater. Trans. A, 1999, 30, p 601

    Article  Google Scholar 

  25. J.B. Pethica and W.C. Oliver, Tip Surface Interactions in STM and AFM, Phys. Scr., 1987, 19, p 61

    Article  Google Scholar 

  26. W.C. Oliver, J.B. Pethica, Methods for Continuous Determination of the Elastic Stiffness of Contact Between Two Bodies. 1989, US Patent 4848141.

  27. G.M. Pharr, W.C. Oliver, and F.R. Brotzen, On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation, J. Mater. Res., 1992, 7, p 613

    Article  Google Scholar 

  28. C.A. Schuh and T.G. Nieh, A Nanoindentation Study of Serrated Flow in Bulk Metallic Glasses, Acta Mater., 2003, 51, p 87

    Article  Google Scholar 

  29. C.A. Schuh, A.C. Lund, and T.G. Nieh, New Regime of Homogeneous Flow in the Deformation Map of Metallic Glasses: Elevated Temperature Nanoindentation Experiments and Mechanistic Modeling, Acta Mater., 2011, 59, p 7480

    Article  Google Scholar 

  30. W.H. Poisl, W.C. Oliver, and B.D. Fabes, The Relationship Between Indentation and Uniaxial Creep in Amorphous Selenium, J. Mater. Res., 1995, 10, p 2024

    Article  Google Scholar 

  31. Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G.Y. Wang, G.F. Zhao, F.Q. Yang, and P.K. Liaw, Tensile Ductility of an AlCoCrFeNi Multi-phase High-Entropy Alloy Through Hot Isostatic Pressing (HIP) and Homogenization, Mater. Sci. Eng. A, 2015, 647, p 229

    Article  Google Scholar 

  32. W.B. Li, J.L. Henshall, R.M. Hooper, and K.E. Easterling, The Mechanisms of Indentation Creep, Acta Metall. Mater., 1991, 39, p 3099

    Article  Google Scholar 

  33. S.A. Syed Asif and J.B. Pethica, Nanoindentation Creep of Single-Crystal Tungsten and Gallium Arsenide, Philos. Mag. A, 1997, 76, p 1105

    Article  Google Scholar 

  34. B.G. Yoo, K.S. Kim, J.H. Oh, U. Ramamurty, and J.I. Jang, Room Temperature Creep in Amorphous Alloys: Influence of Initial Strain and Free Volume, Scr. Mater., 2010, 63, p 1205

    Article  Google Scholar 

  35. Z.J. Wang, S. Guo, Q. Wang, Z.Y. Liu, J.C. Wang, Y. Yang, and C.T. Liu, Nanoindentation Characterized Initial Creep Behavior of a High-Entropy-Based Alloy CoFeNi, Intermetallics, 2014, 53, p 183

    Article  Google Scholar 

  36. Z.M. Jiao, M.Y. Chu, H.J. Yang, Z.H. Wang, and J.W. Qiao, Nanoindentation Characterized Plastic Deformation of a Al0.5CoCrFeNi High Entropy Alloy, Mater. Sci. Technol., 2015, 31, p 1244

    Article  Google Scholar 

  37. A.C. Fischer-Cripps, Introduction to Contact Mechanics, Springer, New York, 2000

    Google Scholar 

  38. J.E. Zorzi and C.A. Perottoni, Estimating Young’s Modulus and Poisson’s ratio by Instrumented Indentation Test, Mater. Sci. Eng. A, 2013, 574, p 25

    Article  Google Scholar 

  39. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties, MIT Press, New York, 1971

    Google Scholar 

  40. Y.V. Milman, A.A. Golubenko, and S.N. Dub, Indentation Size Effect in Nanohardness, Acta Mater., 2011, 59, p 7480

    Article  Google Scholar 

  41. S.G. Ma, S.F. Zhang, J.W. Qiao, Z.H. Wang, M.C. Gao, Z.M. Jiao, H.J. Yang, and Y. Zhang, Superior High Tensile Elongation of a Single-Crystal CoCrFeNiAl0.3 High-Entropy Alloy by Bridgman Solidification, Intermetallics, 2014, 54, p 10450

    Article  Google Scholar 

  42. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phys., 2012, 132, p 233

    Article  Google Scholar 

  43. L.M. Surhone, M.T. Timpledon, and S.F. Marseken, Solid Solution Strengthening, Betascript, UK, 2010

    Google Scholar 

Download references

Acknowledgments

J.W.Q. would like to acknowledge the financial support of National Natural Science Foundation of China (No. 51371122), the Program for the Innovative Talents of Higher Learning Institutions of Shanxi (2013), and the Youth Natural Science Foundation of Shanxi Province, China (No. 2015021005). H.J.Y. would like to acknowledge the financial support from State Key Lab of Advanced Metals and Materials (No. 2013-Z03), and the Youth Science Foundation of Shanxi Province, China (No. 2014021017-3). Z.H.W. would like to acknowledge the financial support of the National Natural Science Foundation of China (No. 11390362), the Top Young Academic Leaders of Shanxi and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi. S.G.M would like to acknowledge the Project (No. 2015021006) supported by Natural Science Foundation of Shanxi. The financial contributions were gratefully acknowledged. Y.Z gratefully appreciate the financial supports from the National High Technology Research and Development Program of China (No. 2009AA03Z113) and the National Science Foundation of China (Nos. 51471025 and 51210105006), 111 Project (B07003), and the Program for Changjiang Scholars and the Innovative Research Team of the University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. H. Wang or J. W. Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Jiao, Z.M., Yuan, G.Z. et al. Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation. J. of Materi Eng and Perform 25, 2255–2260 (2016). https://doi.org/10.1007/s11665-016-2082-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2082-8

Keywords

Navigation