Skip to main content
Log in

Controllable Low-Temperature Hydrothermal Synthesis and Gas-Sensing Investigation of Crystalline SnO2 Nanoparticles

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

SnO2 nanoparticles have been successfully synthesized by a facile hydrothermal method from SnCl2·2H2O, hexamethylenetetramine, and trisodium citrate in water at 120 °C for 12 h. The effects of surfactant and precipitant on SnO2 synthesis were investigated. SnO2 nanoparticles can be synthesized in the temperature range of 120-180 °C with long reaction time in the presence of trisodium citrate. When NaOH was used as precipitant instead of hexamethylenetetramine, it is difficult to obtain SnO2 nanoparticles at 120 °C in the presence of trisodium citrate. SnO2 nanoparticles with an average size of about 5 nm show good crystallinity and excellent sensitivity to ethanol and acetaldehyde in about 55% relative humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Al-Gaashani, S. Radiman, N. Tabet, and A.R. Daud, Optical Properties of SnO2 Nanostructures Prepared Via One-Step Thermal Decomposition of Tin(II) Chloride Dihydrate, Mater. Sci. Eng. B, 2012, 177(6), p 462–470. doi:10.1016/j.mseb.2012.02.006

    Article  Google Scholar 

  2. B.Y. Wei, M.C. Hsu, P.G. Su, H.M. Lin, R.J. Wu, and H.J. Lai, A Novel SnO2 Gas Sensor Doped with Carbon Nanotubes Operating at Room Temperature, Sensor. Act. B, 2004, 101(1–2), p 81–89. doi:10.1016/j.snb.2004.02.028

    Article  Google Scholar 

  3. Y. Guan, D.W. Wang, X. Zhou, P. Sun, H.Y. Wang, J. Ma, and G.Y. Lu, Hydrothermal Preparation and Gas Sensing Properties of Zn-Doped SnO2 Hierarchical Architectures, Sensor. Act. B, 2014, 191, p 45–52. doi:10.1016/j.snb.2013.09.002

    Article  Google Scholar 

  4. J. Liu, X.C. Tang, Y.H. Xiao, H. Jia, M.L. Gong, and F.Q. Huang, Porous Sheet-Like and Sphere-Like Nano-Architectures of SnO2 Nanoparticles Via a Solvent-Thermal Approach and Their Gas-Sensing Performances, Mater. Sci. Eng. B, 2013, 178(18), p 1165–1168. doi:10.1016/j.mseb.2013.06.017

    Article  Google Scholar 

  5. Z. Chen, Y.F. Tian, S.J. Li, H.W. Zheng, and W.F. Zhang, Electrodeposition of Arborous Structure Nanocrystalline SnO2 and Application in Flexible Dye-Sensitized Solar Cells, J. Alloys Compds., 2012, 515, p 57–62. doi:10.1016/j.jallcom.2011.10.116

    Article  Google Scholar 

  6. Z. Yu, S.M. Zhu, Y. Li, Q.L. Liu, C.L. Feng, and D. Zhang, Synthesis of SnO2 Nanoparticles Inside Mesoporous Carbon Via a Sonochemical Method for Highly Reversible Lithium Batteries, Mater. Lett., 2011, 65(19–20), p 3072–3075. doi:10.1016/j.matlet.2011.06.053

    Article  Google Scholar 

  7. C. Wang, Y. Zhou, M.Y. Ge, X.B. Xu, Z.L. Zhang, and J.Z. Jiang, Large-Scale Synthesis of SnO2 Nanosheets with High Lithium Storage Capacity, J. Am. Chem. Soc., 2009, 132(1), p 46–47. doi:10.1021/ja909321d

    Article  Google Scholar 

  8. D. Wang, D. Li, J. Wang, J.L. Yang, D.S. Geng, R.Y. Li, M. Cai, T.K. Sham, and X.L. Sun, Defect-Rich Crystalline SnO2 Immobilized on Graphene Nanosheets with Enhanced Cycle Performance for Li Ion Batteries, J. Phys. Chem. C., 2012, 116(42), p 22149–22156. doi:10.1021/jp306041y

    Article  Google Scholar 

  9. H.B. Wu, J.S. Chen, X.W. Lou, and H. Hoon, Hng, Synthesis of SnO2 Hierarchical Structures Assembled from Nanosheets and Their Lithium Storage Properties, J. Phys. Chem. C., 2011, 115(50), p 24605–24610. doi:10.1021/jp208158m

    Article  Google Scholar 

  10. M. Jayalakshmi, N. Venugopal, K. Phani Raja, and M. Mohan Rao, Nano SnO2–Al2O3 Mixed Oxide and SnO2–Al2O3–Carbon Composite Oxides as New and Novel Electrodes for Supercapacitor Applications, J. Power Sources, 2006, 158(2), p 1538–1543. doi:10.1016/j.jpowsour.2005.10.091

    Article  Google Scholar 

  11. N. Talebian and F. Jafarinezhad, Morphology-Controlled Synthesis of SnO2 Nanostructures Using Hydrothermal Method and Their Photocatalytic Applications, Ceram. Int., 2013, 39(7), p 8311–8317. doi:10.1016/j.ceramint.2013.03.101

    Article  Google Scholar 

  12. A. Purwanto, H. Widiyandari, and A. Jumari, Fabrication of High-Performance Fluorine Doped–Tin Oxide Film Using Flame-Assisted Spray Deposition, Thin Solid Films, 2012, 520(6), p 2092–2095. doi:10.1016/j.tsf.2011.08.041

    Article  Google Scholar 

  13. T.H. Jung, S.I. Kwon, J.H. Park, D.G. Lim, Y.J. Choi, and J.G. Park, SnO2 Nanowires Bridged Across Trenched Electrodes and Their Gas-Sensing Characteristics, Appl. Phys. A, 2008, 91(4), p 707–710. doi:10.1007/s00339-008-4517-z

    Article  Google Scholar 

  14. A. Khorsand Zak, A. Moradi Golsheikh, W. Haliza Abd Majid, and S.M. Banihashemian, Substrate Free Synthesis of Wide Area Stannic Oxide Nano-Structured Sheets Via a Sol-Gel Method Using Gelatin, Mater. Lett., 2013, 109, p 309–312. doi:10.1016/j.matlet.2013.07.084

    Article  Google Scholar 

  15. H. Wang, Y. Qu, H. Chen, Z.D. Lin, and K. Dai, Synthesis and Optoelectrical Properties of SnO2 Nanospheres Derived by Microwave-Assisted Hydrothermal Method, Sens. Act. B, 2014, 201, p 153–159. doi:10.1016/j.snb.2014.04.049

    Article  Google Scholar 

  16. Y. Li, Y.G. Guo, R.Q. Tan, P. Cui, Y. Li, and W.J. Song, Synthesis of SnO2 Nano-Sheets by a Template-Free Hydrothermal Method, Mater. Lett., 2009, 63(24–25), p 2085–2088. doi:10.1016/j.matlet.2009.06.060

    Article  Google Scholar 

  17. X. Wang, R. Huang, and X.Y. Kong, Synthesis and Optoelectrical Properties of SnO2 Nanospheres Derived by Microwave-Assisted Hydrothermal Method, Appl. Phys. A, 2014, 116(4), p 1959–1962. doi:10.1007/s00339-014-8366-7

    Article  Google Scholar 

  18. L. Ma, X.P. Zhou, L.M. Xu, X.Y. Xu, and L.L. Zhang, Biopolymer-Assisted Hydrothermal Synthesis of SnO2 Porous Nanospheres and Their Photocatalytic Properties, Ceram. Int., 2014, 40(8), p 13659–13665. doi:10.1016/j.ceramint.2014.05.078

    Article  Google Scholar 

  19. H. Zhang, W. Zeng, Y. Li, W.G. Chen, and Z.C. Wang, Synthesis of SnO2 Flower-Like Architectures by Varying the Hydrothermal Reaction Time, J. Mater. Sci., 2014, 25(9), p 3674–3679. doi:10.1016/j.materresbull.2014.05.019

    Google Scholar 

  20. Y. Masuda, T. Ohji, and K. Kato, Tin Oxide Nanosheet Assembly for Hydrophobic/Hydrophilic Coating and Cancer Sensing, ACS Appl. Mater. Interf., 2012, 4(3), p 1666–1674. doi:10.1021/am201811x

    Article  Google Scholar 

  21. G.W. Chu, Q.H. Zeng, Z.G. Shen, H.K. Zou, and J.F. Chen, Preparation of SnO2 Nanoparticles Using a Helical Tube Reactor Via Continuous Hydrothermal Route, Chem. Eng. J., 2014, 253, p 78–83. doi:10.1016/j.cej.2014.05.016

    Article  Google Scholar 

  22. Y.J. Chen, C.L. Zhu, L.J. Wang, and T.H. Wang, One-Pot Synthesis of Crystalline SnO2 Nanoparticles and their Low-Temperature Ethanol Sensing Characteristics, Sci. China Ser. G, 2009, 52, p 1601–1605. doi:10.1007/s11433-009-0193-z

    Article  Google Scholar 

  23. M. Wang, Y.F. Gao, L. Dai, C.X. Cao, and X.H. Guo, Influence of Surfactants on the Morphology of SnO2 Nanocrystals Prepared Via a Hydrothermal Method, J. Solid State Chem., 2012, 189, p 49–56. doi:10.1016/j.jssc.2012.01.021

    Article  Google Scholar 

  24. M. Wang, Y.F. Gao, L. Dai, C.X. Cao, Z. Chen, and X.H. Guo, Surfactant-Free Hydrothermal Synthesis of SnO2 Powders with Controllable Morphologies and Their Photocatalytic Water Treatment Application, Sci. Adv. Mater., 2013, 5(12), p 1867–1876. doi:10.1166/sam2013.1652

    Article  Google Scholar 

  25. X. Hu, X. Shen, R. Huang, R. Huang, Y. Masuda, T. Ohji, and K. Kato, A Facile Template-Free Route to Synthesize Porous ZnO Nanosheets with High Surface Area, J. Alloys Compds., 2013, 580, p 373–376. doi:10.1016/j.jallcom.2013.06.089

    Article  Google Scholar 

  26. Y.Q. Zhang, L. Li, S.J. Shi, Q.Q. Xiong, X.Y. Zhao, X.L. Wang, C.D. Gu, and J.P. Tu, Synthesis of Porous Co3O4 Nanoflake Array and Its Temperature Behavior as Pseudo-Capacitor Electrode, J. Power Sources, 2014, 256, p 200–205. doi:10.1016/j.jpowsour.2014.01.073

    Article  Google Scholar 

  27. Y.J. Chen, C.L. Zhu, and T.H. Wang, The Enhanced Ethanol Sensing Properties of Multi-Walled Carbon Nanotubes/SnO2 Core/Shell Nanostructures, Nanotechnology, 2006, 17(12), p 3012. doi:10.1088/0957-4484/17/12/033

    Article  Google Scholar 

  28. Y.J. Chen, L. Nie, X.Y. Xue, Y.G. Wang, and T.H. Wang, Linear Ethanol Sensing of SnO2 Nanorods with Extremely High Sensitivity, Appl. Phys. Lett., 2006, 88(8), p 83105. doi:10.1063/1.2166695

    Article  Google Scholar 

  29. J. Zhang, J. Guo, H.Y. Xu, and B.Q. Cao, Reactive-Template Fabrication of Porous SnO2 Nanotubes and Their Remarkable Gas-Sensing Performance, ACS Appl. Mater. Int., 2013, 5(16), p 7893–7898. doi:10.1021/am4019884

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Innovation and Entrepreneurship Training Program” of the Jiangsu students (No. 201310291012Z), the National Natural Science Foundation of China (Grant No. 51372113), Program for New Century Excellent Talents in University (NCET-12-0733, China), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), and Specially Appointed Professors by Universities in Jiangsu Province (SPUJP-2012, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiulan Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Hu, X., Huang, H. et al. Controllable Low-Temperature Hydrothermal Synthesis and Gas-Sensing Investigation of Crystalline SnO2 Nanoparticles. J. of Materi Eng and Perform 25, 1342–1346 (2016). https://doi.org/10.1007/s11665-016-1991-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1991-x

Keywords

Navigation