Skip to main content
Log in

Experimental Study on the Anisotropic Stress-Strain Behavior of Polycrystalline Ni-Mn-Ga in Directional Solidification

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloy produced by directional solidification is the subject of this research paper. The compressive stress-strain curves of the material for different cutting angles to the solidification direction are tested. The martensite Young’s modulus, macroscopic reorientation strain, and phase transition critical stress are analyzed experimentally. The results show that mechanical behaviors in the loading-unloading cycle of the material present nonlinear and anisotropic characteristics, which are all closely related to the material’s orientation to the solidification direction. The martensite Young’s modulus, macroscopic reorientation strain, and phase transition critical stress achieve maximum values in the solidification direction. A 50° orientation to the solidification direction is the cut-off direction of the mechanical properties, where the martensite Young’s modulus and reorientation start critical stress reach minimum values. The present study is expected to provide sound guidance for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Reference

  1. O. Heczko, A. Sozinov, and K. Ullakko, Giant Field-Induced Reversible Strain in Magnetic Shape Memory NiMnGa Alloy, IEEE Trans. Magn., 2000, 36, p 3266–3273

    Article  Google Scholar 

  2. S.J. Murray, M. Marioni, S.M. Allen, R.C. O’Handley, and T.A. Lograsso, 6% magnetic-Field-Induced Strain by Twin-Boundary Motion in Ferromagnetic Ni-Mn-Ga, Appl. Phys. Lett., 2000, 77, p 886–893

    Article  Google Scholar 

  3. W.H. Wang, G.H. Wu, J.L. Chen, C.H. Yu, Z. Wang, Y.F. Zheng, L.C. Zhao, and W.S. Zhan, Effect of Internal Stress and Bias Field on the Transformation Strain of the Heusler Alloy Ni52Mn24.4Ga23.6, J. Phys., 2000, 12, p 6287–6293

    Google Scholar 

  4. J.Y. Gauthier and C. Lexcellent, Ni-Mn-Ga Single Crystal, Ann. Solid Struct. Mech., 2011, 2, p 19–31

    Article  Google Scholar 

  5. J. Wang and P. Steinmann, A Variational Approach Towards the Modeling of Magnetic Field-Induced Strains in Magnetic Shape Memory Alloys, J. Mech. Phys. Solids, 2012, 60, p 1179–1200

    Article  Google Scholar 

  6. X. Chen, Y.J. He, and Z. Moumni, Twin Boundary Motion in NiMnGa Single Crystals Under Biaxial Compression, Mater. Lett., 2013, 9, p 72–75

    Article  Google Scholar 

  7. Q.H. Liu, J. Liu, Y.J. Huang, Q.D. Hu, and J.G. Li, A Study of Microstructure and Crystal Orientation in Directionally Solidified Ni-Fe-Ga-Co Magnetic Shape Memory Alloys, J. Alloys Compd., 2013, 572, p 186–191

    Article  Google Scholar 

  8. Z. Li, Y. Zhang, C.E. Esling, X. Zhao, and L. Zuo, Twin Relationships of 5 M Modulated Martensite in Ni-Mn-Ga Alloy, Acta Mater., 2011, 59, p 3390–3397

    Article  Google Scholar 

  9. R. Chulist, W. Skrotzki, C.-G. Oertel, A. Böhm, and M. Pötschke, Change in Microstructure During Training of a Ni50Mn29Ga21 Bicrystal, Scr. Mater., 2010, 63, p 548–551

    Article  Google Scholar 

  10. T. Liang, C.B. Jiang, H.B. Xu, Z.H. Liu, M. Zhang, Y.T. Cui, and G.H. Wu, Phase Transition Strain and Large Magnetic Field Induced Strain in Ni50.5Mn24Ga25.5 Unidirectionally Solidified Alloy, J. Magn. Magn. Mater., 2004, 268, p 29–32

    Article  Google Scholar 

  11. M. Pötschke, S. Weiss, U. Gaitzsch, D. Cong, C. Hürrich, and S. Roth, Magnetically Resettable 0.16% Free Strain in Polycrystalline Ni-Mn-Ga Plates, Scr. Mater., 2010, 63, p 383–386

    Article  Google Scholar 

  12. U. Gaitzsch, M. Pötschke, S. Roth, B. Rellinghaus, and L. Schultz, A 1% Magnetostrain in Polycrystalline 5 M Ni-Mn-Ga, Acta Mater., 2009, 57, p 365–370

    Article  Google Scholar 

  13. U. Gaitzsch, J. Romberg, M. Pötschke, S. Roth, and P. Müllner, Stable Magnetic-Field-Induced Strain Above 1% in Polycrystalline Ni-Mn-Ga, Scr. Mater., 2011, 65, p 679–682

    Article  Google Scholar 

  14. Y. Li, Y. Xin, C. Jiang, and H. Xu, Shape Memory Effect of Grain Refined Ni54Mn25Ga21 Alloy with High Transformation Temperature, Scr. Mater., 2004, 51, p 849–852

    Article  Google Scholar 

  15. H. Morawiec, T. Goryczka, J. Lelatko, K. Prusik, and A. Drdzeń, Effect of Deformation on Structure and Mechanical Behavior of Polycrystalline Ni-Mn-Ga Alloys, Eur. Phys. J., 2008, 158, p 93–98

    Google Scholar 

  16. S. Guo, Y. Zhang, J. Li, B. Quan, Y. Qi, and X. Wang, Martensitic Transformation And Magnetic-Field-Induced Strain in Magnetic Shape Memory Alloy NiMnGa Melt-Spun Ribbon, J. Mater. Sci. Technol., 2005, 21, p 211–214

    Article  Google Scholar 

  17. U. Gaitzsch, M. Pötschke, S. Roth, B. Rellinghaus, and L. Schultz, Mechanical Training of Polycrystalline 7 M Ni50Mn30Ga20 Magnetic Shape Memory Alloy, Scr. Mater., 2007, 57, p 493–495

    Article  Google Scholar 

  18. Y.P. Zhu, Y.L. Gu, and H.G. Liu, A Macroscopic Constitutive Model of Temperature- Induced Phase Transition of Ni2MnGa Polycrystalline Ferromagnetic Shape Memory Alloys by Directional Solidification, Mater. Sci. Eng. A, 2015, 626, p 474–479

    Article  Google Scholar 

  19. D.Y. Cong, Y.D. Zhang, Y.D. Wang, M. Humbert, X. Zhao, T. Watanabe, L. Zuo, and C. Esling, Experiment and Theoretical Prediction of Martensitic Transformation Crystallography in a Ni-Mn-Ga Ferromagnetic Shape Memory Alloy, Acta Mater., 2007, 55, p 4731–4740

    Article  Google Scholar 

  20. Z.H. Nie, Y.D. Wang, G.Y. Wang, J.W. Richrdson, G. Wang, Y.D. Liu, P.K. Liae, and L. Zuo, Phase Transition and Texture Evolution in the Ni-Mn-Ga Ferromagnetic Shape-Memory Alloys Studied by a Neutron Diffraction Technique, Metal. Mater. Trans. A, 2008, 39A, p 3113–3119

    Article  Google Scholar 

  21. R. Chulist, W. Skrotzki, C.-G. Oertel, A. Böhmb, and M. Pötschke, Change in Microstructure During Training of a Ni50Mn29Ga21 Bicrystal, Scr. Mater., 2010, 63, p 548–551

    Article  Google Scholar 

  22. C. Hürrich, H. Wendrock, M. Pötschke, U. Gaitzsch, S. Roth, B. Rellinghaus, and L. Schultz, Analysis of Variant Orientation Before and After Compression in Polycrystalline Ni50Mn29Ga21 MSMA, J. Mater. Eng. Perform., 2009, 18, p 554–557

    Article  Google Scholar 

  23. Y.J. Huang, Q.D. Hu, N. Bruno, I. Karaman, and J.G. Li, Influence of Grain Boundary on Pseudoelasticity in Highly-Oriented Polycrystalline Ni52Fe17Ga27Co4 Ferromagnetic Shape Memory Alloy, Mater. Lett., 2014, 114, p 11–14

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Natural Science Foundation of China (Grant Nos. 11272136 and 11502284) and the Tianjin Natural Science Foundation (grant no. 15JCQNJC42600) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, Y., Shi, T., Zhu, Y. et al. Experimental Study on the Anisotropic Stress-Strain Behavior of Polycrystalline Ni-Mn-Ga in Directional Solidification. J. of Materi Eng and Perform 25, 1056–1061 (2016). https://doi.org/10.1007/s11665-016-1920-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1920-z

Keywords

Navigation