Skip to main content
Log in

Determination of Constitutive Equation for Thermo-mechanical Processing of INCONEL 718 Through Double Multivariate Nonlinear Regression Analysis

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study comprises the determination of constitutive relationship for thermo-mechanical processing of INCONEL 718 through double multivariate nonlinear regression, a newly developed approach which not only considers the effect of strain, strain rate, and temperature on flow stress but also explains the interaction effect of these thermo-mechanical parameters on flow behavior of the alloy. Hot isothermal compression experiments were performed on Gleeble-3500 thermo-mechanical testing machine in the temperature range of 1153 to 1333 K within the strain rate range of 0.001 to 10 s−1. The deformation behavior of INCONEL 718 is analyzed and summarized by establishing the high temperature deformation constitutive equation. The calculated correlation coefficient (R) and average absolute relative error (AARE) underline the precision of proposed constitutive model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.-H. Zhang, H.-Y. Zhang, and M. Cheng, Tensile Deformation and Fracture Characteristics of Delta-Processed Inconel 718 Alloy at Elevated Temperature, Mater. Sci. Eng. A, 2011, 528(19), p 6253–6258

    Article  Google Scholar 

  2. Y. Lin, M.-S. Chen, and J. Zhong, Study of Metadynamic Recrystallization Behaviors in a Low Alloy Steel, J. Mater. Process. Technol., 2009, 209(5), p 2477–2482

    Article  Google Scholar 

  3. Y. Lin, M.-S. Chen, and J. Zhong, Effects of Deformation Temperatures on Stress/Strain Distribution and Microstructural Evolution of Deformed 42CrMo Steel, Mater. Des., 2009, 30(3), p 908–913

    Article  Google Scholar 

  4. Y. Lin and M.-S. Chen, Study of Microstructural Evolution During Static Recrystallization in a Low Alloy Steel, J Mater Sci, 2009, 44(3), p 835–842

    Article  Google Scholar 

  5. T. Seshacharyulu et al., Hot Working of Commercial Ti–6Al–4V with an Equiaxed α–β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284(1), p 184–194

    Article  Google Scholar 

  6. H. McQueen, Development of Dynamic Recrystallization Theory, Mater. Sci. Eng. A, 2004, 387, p 203–208

    Article  Google Scholar 

  7. K. Ohwue, T. Yoshida, and M. Usuda, Influence of Material Properties and Work Process Factors in Sheet Metal Forming, Proceedings of the 4th International Conference on Numerical Methods in Industrial Forming Processes-Numisheet, 1992

  8. R. Wagoner, Y. Kim, and Y. Keum, 3-D Sheet Forming Analysis Including the Effects of Strain Hardening, Rate Sensitivity, Anisotropy, Friction, Heat Generation, and Transfer. Advanced Technology of Plasticity, Jpn Soc Technol Plast, 1990, 4, p 1751–1756

    Google Scholar 

  9. G.R. Johnson, and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, 1983, The Netherlands.

  10. F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816–1825

    Article  Google Scholar 

  11. D. Samantaray, S. Mandal, and A. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr–1Mo Steel, Comput. Mater. Sci., 2009, 47(2), p 568–576

    Article  Google Scholar 

  12. S.-T. Chiou, W.-C. Cheng, and W.-S. Lee, Strain Rate Effects on the Mechanical Properties of a Fe–Mn–Al Alloy Under Dynamic Impact Deformations, Mater. Sci. Eng. A, 2005, 392(1), p 156–162

    Article  Google Scholar 

  13. W.-S. Lee and C.-Y. Liu, Comparison of Dynamic Compressive Flow Behavior of Mild and Medium Steels over Wide Temperature Range, Metall Mater Trans A, 2005, 36(11), p 3175–3186

    Article  Google Scholar 

  14. W.-S. Lee and C.-Y. Liu, The Effects of Temperature and Strain Rate on the Dynamic Flow Behaviour of Different Steels, Mater. Sci. Eng. A, 2006, 426(1), p 101–113

    Article  Google Scholar 

  15. G.R. Johnson and T.J. Holmquist, Evaluation of Cylinder-Impact Test Data for Constitutive Model Constants, J. Appl. Phys., 1988, 64(8), p 3901–3910

    Article  Google Scholar 

  16. G.Z. Voyiadjis and F.H. Abed, Microstructural Based Models for bcc and fcc Metals with Temperature and Strain Rate Dependency, Mech. Mater., 2005, 37(2), p 355–378

    Article  Google Scholar 

  17. S. Dey et al., On the Influence of Constitutive Relation in Projectile Impact of Steel Plates, Int. J. Impact Eng, 2007, 34(3), p 464–486

    Article  Google Scholar 

  18. A. Lennon and K. Ramesh, The Influence of Crystal Structure on the Dynamic Behavior of Materials at High Temperatures, Int. J. Plast, 2004, 20(2), p 269–290

    Article  Google Scholar 

  19. O. Sabokpa et al., Artificial Neural Network Modeling to Predict the High Temperature Flow Behavior of an AZ81 Magnesium Alloy, Mater. Des., 2012, 39, p 390–396

    Article  Google Scholar 

  20. D. Samantaray et al., Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng. A, 2011, 528(4), p 1937–1943

    Article  Google Scholar 

  21. M. Xiao et al., Constitutive Equation for Elevated Temperature Flow Behavior of TiNiNb Alloy Based on Orthogonal Analysis, Mater. Des., 2012, 35, p 184–193

    Article  Google Scholar 

  22. Y. Yang et al., A Modified Constitutive Equation for Aluminum Alloy Reinforced by Silicon Carbide Particles at Elevated Temperature, J. Mater. Eng. Perform., 2013, 22(9), p 2641–2655

    Article  Google Scholar 

  23. Z. Yuan et al., A Modified Constitutive Equation for Elevated Temperature Flow Behavior of Ti–6Al–4V Alloy Based on Double Multiple Nonlinear Regression, Mater. Sci. Eng. A, 2013, 578, p 260–270

    Article  Google Scholar 

  24. B. Zhang, D.J. Mynors, A. Mugarra, and K. Ostolaza, Representing the Super Plasticity of Inconel 718, J. Mater. Process. Technol., 2004, 153–154, p 694–698

    Article  Google Scholar 

  25. H.Y. Zhang, S.H. Zhang, Z.X. Li, and M. Cheng, Hot Die Forging Process Optimization of Superalloy IN718 Turbine Disc Using Processing Map and Finite Element Method, J. Eng. Manuf., 2010, 224, p 103–110

    Article  Google Scholar 

  26. Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang, Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng. A, 2008, 497, p 479–486

    Article  Google Scholar 

  27. A. Nowotnik, Effect of High Temperature Deformation on the Structure of Ni Based Superalloy, J. Achiev Mater Manuf Eng, 2008, 27(2), p 115–122

    Google Scholar 

  28. E.C. Aifantis, The Physics of Plastic Deformation, Int. J. Plast, 1987, 3(3), p 211–247

    Article  Google Scholar 

  29. S. Bodner and Y. Partom, Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials, J. Appl. Mech., 1975, 42(2), p 385–389

    Article  Google Scholar 

  30. Perzyna, P., The Constitutive Equations for Rate Sensitive Plastic Materials, 1962, DTIC Document.

  31. C. Sellars and W.M. Tegart, Hot Workability, Int. Metall. Rev., 1972, 17(1), p 1–24

    Google Scholar 

  32. A. Nowotnik, High Temperature Deformation of Superalloy Inconel 718, Solid State Phenom., 2012, 186, p 147–150

    Article  Google Scholar 

  33. M. Tresa, Pollock and Sammy Tin, and Properties, J. Propul. Power, 2006, 22(2), p 361–374

    Article  Google Scholar 

  34. A. Bunsch, J. Kowalska, and M. Witkowska, Influence of Die Forging Parameters on the Microstructure and Phase Composition of INCONEL 718, Arch. Metall. Mater., 2012, 57(4), p 929–935

    Google Scholar 

Download references

Acknowledgment

The authors are very grateful for the support received from National Natural Science Foundation of China (No. 51275414), Aeronautical Science Foundation of China under Grant No. 2011ZE53059, and Graduate Starting Seed Fund of Northwestern Polytechnical University (Grant No. Z2014007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuguo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M.Z., Li, F., Wang, J. et al. Determination of Constitutive Equation for Thermo-mechanical Processing of INCONEL 718 Through Double Multivariate Nonlinear Regression Analysis. J. of Materi Eng and Perform 24, 2744–2756 (2015). https://doi.org/10.1007/s11665-015-1542-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1542-x

Keywords

Navigation