Skip to main content
Log in

Numerical Analysis of Joint Temperature Evolution During Friction Stir Welding Based on Sticking Contact

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A three-dimensional numerical model for friction stir welding was developed by using the ABAQUS software based on a fully sticking friction. The temperature measurement was performed to validate the reliability of the model. The simulated thermal histories are in good agreement with the experiments. Simulated results show that the rotation speed has no influence on the time to reach the peak temperature in the workpiece, while the welding speed has significant effect on the time to reach the peak temperature at points away from the plunging center. The value of this peak temperature also changes somewhat. Moreover, the peak temperature in the workpiece tends to reach a quasi-steady state at the beginning of the moving stage; but the temperature at some distance away from the weld does not reach the quasi-steady state during the welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Sato, H. Kokawa, and M. Enomoto, Microstructural Evolution of 6063 Aluminum during Friction Stir Welding, Metall. Mater. Trans. A, 2000, 30, p 2429–2437

    Article  Google Scholar 

  2. C.J. Dawes and W.M. Thomas, Friction Stir Process for Aluminum Alloys, Weld. J., 1996, 75, p 41–45

    Google Scholar 

  3. H. Fujii, Y.F. Sun, and H. Kato, Microstructure and Mechanical Properties of Friction Stir Welded Pure Mo Joints, Scripta Mater., 2011, 64, p 657–660

    Article  CAS  Google Scholar 

  4. L. Fratini, G. Buffa, and R. Shivpuri, Mechanical and Metallurgical Effects of in Process Cooling during Friction Stir Welding of AA7075-T6 Butt Joints, Acta Mater., 2010, 58, p 2056–2067

    Article  CAS  Google Scholar 

  5. H.J. Liu, H.J. Zhang, and L. Yu, Effect of Welding Speed on Microstructures and Mechanical Properties of Underwater Friction Stir Welded 2219 Aluminum Alloy, Mater. Des., 2219, 32, p 1548–1553

    Article  Google Scholar 

  6. M. Peel, A. Steuwer, M. Preuss, and P.J. Withers, Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds, Acta Mater., 2003, 51, p 4791–4801

    Article  CAS  Google Scholar 

  7. Y. Chao and X. Qi, Thermal and Thermo-Mechanical Modeling of Friction Stir Welding of Aluminum Alloy 6001-T6, J. Mater. Process. Manuf. Sci., 1998, 7, p 215–233

    Article  CAS  Google Scholar 

  8. M. Song and R. Kovacevic, Thermal Modeling of Friction Stir Welding in a Moving Coordinate and Its Validation, Int. J. Mach. Tool Manuf., 2003, 43, p 605–615

    Article  Google Scholar 

  9. H. Schmidt, J. Hattel, and J. Wert, An Analytical Model for the Heat Generation in Friction Stir Welding, Modell. Simul. Mater. Sci. Eng., 2004, 12, p 143–157

    Article  Google Scholar 

  10. H. Schmidt and J. Hattel, Thermal Modelling of Friction Stir Welding, Scripta Mater., 2008, 58, p 332–337

    Article  CAS  Google Scholar 

  11. M. Maalekian, E. Kozeschnik, H.P. Brantner, and H. Cerjak, Comparative Analysis of Heat Generation in Friction Welding of Steel Bars, Acta Mater., 2008, 56, p 2843–2855

    Article  CAS  Google Scholar 

  12. P. Ulysse, Three-Dimensional Modeling of the Friction Stir-Welding Process, Int. J. Mach. Tool Manuf., 2002, 42, p 1549–1557

    Article  Google Scholar 

  13. P.F. Mendez, K.E. Tello, and T.J. Lienert, Scaling of Coupled Heat Transfer and Plastic Deformation around the Pin in Friction Stir Welding, Acta Mater., 2010, 58, p 6012–6026

    Article  CAS  Google Scholar 

  14. M.Z.H. Khandkar and J.A. Khan, Thermal Modeling of Overlap Friction Stir Welding for Al-alloys, J. Mater. Process. Manuf. Sci., 2001, 10, p 91–105

    CAS  Google Scholar 

  15. M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds, Prediction of Temperature Distribution and Thermal History during Friction Stir Welding: Input Torque Based Model, Sci. Technol. Weld. Join., 2003, 8, p 165–174

    Article  Google Scholar 

  16. R. Nandan, G.G. Roy, and T. DebRoy, Numerical Simulation of Three-dimensional Heat Transfer and Plastic Flow during Friction Stir Welding, Metall. Mater. Trans. A, 2006, 37, p 1247–1259

    Article  Google Scholar 

  17. R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, Numerical Modelling of 3D Plastic Flow and Heat Transfer during Friction Stir Welding of Stainless Steel, Sci. Technol. Weld. Join., 2006, 11, p 526–537

    Article  Google Scholar 

  18. R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, Three-dimensional Heat and Material Flow during Friction Stir Welding of Mild Steel, Acta Mater., 2007, 55, p 883–895

    Article  CAS  Google Scholar 

  19. S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel, Finite Element Simulation of Material Flow in Friction Stir Welding, Sci. Technol. Weld. Join., 2001, 6(3), p 191–193

    Article  Google Scholar 

  20. V. Soundararajan, S. Zekovic, and R. Kovacevic, Thermo-Mechanical Model with Adaptive Boundary Conditions for Friction Stir Welding of Al 6061, Int. J. Mach. Tool Manuf., 2005, 45, p 1577–1587

    Article  Google Scholar 

  21. D. Kim, H. Badarinarayan, J.H. Kim, C. Kim, K. Okamoto, R.H. Wagoner, and K. Chung, Numerical Simulation of Friction Stir Butt Welding Process for AA5083-H18 Sheets, Eur. J. Mech. A-Solid, 2010, 29, p 204–215

    Article  Google Scholar 

  22. F. Gemme, Y. Verreman, L. Dubourg, and M. Jahazi, Numerical Analysis of the Dwell Phase in Friction Stir Welding and Comparison with Experimental Data, Mater. Sci. Eng. A, 2010, 527, p 4152–4160

    Article  Google Scholar 

  23. W. Tang, X. Guo, J.C. McClure, L.E. Murr, and A. Nunes, Heat Input and Temperature Distribution in Friction Stir Welding, J. Mater. Process. Manuf. Sci., 1998, 7(2), p 163–172

    Article  CAS  Google Scholar 

  24. G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, A Continuum Based Fem Model for Friction Stir Welding—Model Development, Mater. Sci. Eng. A, 2006, 419, p 389–396

    Article  Google Scholar 

  25. C.M. Chen and R. Kovacevic, Finite Element Modeling of Friction Stir Welding—Thermal and Thermomechanical Analysis, Int. J. Mach. Tool Manuf., 2003, 43(13), p 1319–1326

    Article  Google Scholar 

  26. S. Cui, Z.W. Chen, and J.D. Robson, A Model Relating Tool Torque and Its Associated Power and Specific Energy to Rotation and Forward Speeds during Friction Stir Welding/Processing, Int. J. Mach. Tool Manuf., 2010, 50, p 1023–1030

    Article  Google Scholar 

  27. H. Schmidt, J. Hattel, and J. Wert, A Local Model for the Thermo-Mechanical Conditions in Friction Stir Welding, Modell. Simul. Mater. Sci. Eng., 2005, 13, p 77–93

    Article  Google Scholar 

  28. H.K. Li, Q.Y. Shi, T. Li, and W. Wang, Auto-adaptive Heat Source Model for Numerical Analysis of Friction Stir Welding, Mater. Sci. Forum, 2008, 580-582, p 267–270

    Article  CAS  Google Scholar 

  29. O.T. Midling and Ø. Grong, A Process Model for Friction Welding of Al-Mg-Si Alloys and Al-SiC Metal Matrix Composites-I. Haz Temperature and Strain Rate Distribution, Acta Metall. Mater., 1994, 42(5), p 1595–1609

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate financial supports from the Ao-Xiang Star Project of Northwestern Polytechnical University (NPU), the Research Fund of the State Key Laboratory of Solidification Processing (NPU, China) (Grant No. 69-QP-2011), the Program for New Century Excellent Talents in University by the Ministry of Education of China (NECT-08-0463), and the National Natural Science Foundation of China (51005180) and the 111 Project (B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenya Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Zhang, Z., Li, J. et al. Numerical Analysis of Joint Temperature Evolution During Friction Stir Welding Based on Sticking Contact. J. of Materi Eng and Perform 21, 1849–1856 (2012). https://doi.org/10.1007/s11665-011-0092-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-0092-0

Keywords

Navigation