Skip to main content
Log in

Mechanical Properties and Fracture Surface Morphologies in Unnotched Specimens of Rubber-PMMA Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Correlations between mechanical properties and microscopic features were investigated using unnotched specimens of rubber-PMMA composites in very low to medium range of cross head speeds. It is found that: (1) a trapezoid-shaped smooth region and fish scale-like texture with bands in rough region correlates with brittle failure in pure PMMA, while a quarter circle-shaped smooth region and hackle-like texture, and the presence of dimples and/or voids correlate with ductile failure in rubber-PMMA composites; (2) decrease in degree of roughness in rubber-PMMA composites can be correlated with decrease in Young’s modulus; (3) decrease in size of the smooth region with increasing speed can be correlated with decrease in modulus of toughness; (4) larger smooth region in rubber-PMMA composites containing more rubber correlates with higher modulus of toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.B. Bucknall, Toughened Plastics, Applied Science Publishers Ltd, London, 1977

    Google Scholar 

  2. I.M. Ward, Mechanical Properties of Solid Polymers, 2nd ed., John Wiley & Sons Ltd, New York, 1990

    Google Scholar 

  3. S. Bandyopadhyay, Macroscopic Fracture Behaviour: Correlation with Macroscopic Aspects of Deformation in Toughened Epoxies, Toughened Plastics I: Science & Engineering, C. Keith Riew and Anthony J. Kinloch, Eds., Advances in Chemistry Series 233, American Chemical Society, 1993, p 211–258

  4. O. Frank, J. Lehmann, Determination of Various Deformation Processes in Impact-Modified PMMA at Strain Rates up to 103 Per Minute; Colloid Polym. Sci. 1986, 264: 473-481

    Article  CAS  Google Scholar 

  5. R.W. Truss, G.A. Chadwick, The Tensile Deformation Behaviour of a Transparent ABS Polymer, J. Mater. Sci. 1976, 11: 1385

    Article  CAS  Google Scholar 

  6. R.K. Goldberg, G.D. Roberts, and A. Gilat, Incorporation of Mean Stress Effects into the Micromechanical Analysis of the High Strain Rate Response of Polymer Matrix Composites, Compos. Part B, 2003, 34, p 151–165

  7. C. Grein, H.-H. Kausch, Ph. Be´guelin, Characterisation of Toughened Polymers by LEFM Using an Experimental Determination of the Plastic Zone Correction, Polymer Test. 2003, 22: 733-746

    Article  CAS  Google Scholar 

  8. T. Vu-Khanh, Z. Yu, Mechanisms of Brittle-Ductile Transition in Toughened Thermoplastics, Theor. Appl. Fract. Mech. 1997, 26: 177-183

    Article  CAS  Google Scholar 

  9. W. Jiang, D. Yu, B. Jiang, Brittle-Ductile Transition of Particle Toughened Polymers: Influence of the Matrix Properties, Polymer 2002, 45: 6427-6430

    Article  Google Scholar 

  10. Christophe FOND and Robert SCHIRRER, Dynamic Fracture Surface Energy Values and Branching Instabilities During Rapid Crack Propagation in Rubber Toughened PMMA, in C. R. Acad. Sci. Paris, t. 329, Série II b, 2001, p 195–200

  11. P.A. Tzika, M.C. Boyce, D.M. Parks, Micromechanics of Deformation in Particle-Toughened Polyamides, J. Mech. Phys. Solids, 2000, 48: 1893-1929

    Article  CAS  Google Scholar 

  12. G.M. Kim, G.H. Michler, Micromechanical Deformation Processes in Toughened and Particle Filled Semicrystalline Polymers. Part 2: Model Representation for Micromechanical Deformation Processes, Polymer, 1998, 39(22): 5699-5703

    Article  CAS  Google Scholar 

  13. S. Biwa, N. Ito, N. Ohno, Elastic Properties of Rubber Particles in Toughened PMMA: Ultrasonic and Micromechanical Evaluation, Mech. Mater. 2001, 33: 717-728

    Article  Google Scholar 

  14. N. Murphy, A. Ivankovic, The Prediction of Dynamic Fracture Evolution in PMMA Using a Cohesive Zone Model, Eng. Fract. Mech. 2005, 72: 861-875

    Article  Google Scholar 

  15. X.F. Yao, W. Xu, M.Q. Xu, K. Arakawa, T. Mada, K. Takahashi, Experimental Study of Dynamic Fracture Behavior of PMMA with Overlapping Offset-Parallel Cracks, Polymer Test. 2003, 22: 663-670

    Article  CAS  Google Scholar 

  16. F. Zhou, J.-F. Molinari, T. Shioya, A Rate-Dependent Cohesive Model for Simulating Dynamic Crack Propagation in Brittle Materials, Eng. Fract. Mech. 2005, 72: 1383-1410

    Article  Google Scholar 

  17. D. Taylor, M. Merlo, R. Pegleya, M.P. Cavatorta, The Effect of Stress Concentrations on the Fracture Strength of Olymethylmethacrylate, Mater. Sci. Eng. A 2004, 382: 288-294

    Article  Google Scholar 

  18. W. Loyens, G. Groeninckx, Deformation Mechanisms in Rubber Toughened Semicrystalline Polyethylene Terephthalate, Polymer, 2003, 44: 4929-4941

    Article  CAS  Google Scholar 

  19. C.B. Bucknall, I. Partridge, M.V. Ward, Rubber Toughening of Plastics, J. Mater. Sci. 1984, 19: 2064-2082

    Article  CAS  Google Scholar 

  20. O. Julien, Ph. Begulin, I. Monnerie, and H.-H. Kausch, Loading-Rate Dependence of the Fracture Behaviour of Rubber-Modified Poly(Methyl Methacrylate), Toughened Plastics II: Novel Approaches in Science & Engineering, C. Keith Riew and Anthony J. Kinloch, Eds., Advances in Chemistry Series 252, American Chemical Society, 1996, p 233–252

  21. A. Savadori, Methods of Measurements and Interpretation of results: In Rubber Toughened Engineering Plastics, A.A. Collyar Ed, Chapman & Hall, London, 1994, p 90-135

    Google Scholar 

  22. R.W. Truss, G.A. Chadwick, Tensile Behaviour of ABS Polymers, J. Mater. Sci. 1976, 11:111-117

    Article  CAS  Google Scholar 

  23. David Broek, Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Dordrecht, 1986

  24. D.R. Askeland and P.P. Phulé, The Science and Engineering of Materials, 4th ed., Brooks Cole Publishing, a division of Thomson Learning, 2004

  25. R.J. Young, P.A. Lovell, Introduction to Polymers, 2nd ed., CHAPMAN & HALL, London, 1991

    Google Scholar 

  26. J. Marin, Testing of Polymers, Vol.1, John V. Schmitz, Ed., John Willey & Sons, Inc., New York, 1965, p 87

  27. C.R. Brooks, A. Choudhury, Failure Analysis of Engineering Materials, McGraw-Hill Companies, New York, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyun Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, S., Bandyopadhyay, S. Mechanical Properties and Fracture Surface Morphologies in Unnotched Specimens of Rubber-PMMA Composites. J. of Materi Eng and Perform 16, 601–606 (2007). https://doi.org/10.1007/s11665-007-9042-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-007-9042-2

Keywords

Navigation