Skip to main content
Log in

Enhancement of the Performance Properties of Pure Cotton Fabric by Incorporating Conducting Polymer (PEDOT:PSS) for Flexible and Foldable Electrochemical Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Pure natural cotton has flexible and foldable characteristics with a high response rate which makes it an excellent candidate for the development of low-cost electrodes for electrochemical supercapacitors. Here, a composite of cotton (C/P:P) with different ratios of conducting polymer, poly(3, 4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), was developed through polymerization using dimethyl sulfoxide (DMSO) as a physical cross-linker. A hydrogel electrolyte has been developed using natural polymer starch and sodium alginate. The fabricated supercapacitor utilizing the developed composite and the hydrogel electrolyte has been analyzed by employing different characterization techniques. The structural properties of pure and composite electrodes (C/P:P) were investigated by x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy; the surface morphology was elucidated by field emission scanning electron microscopy (FESEM). Thermal properties were investigated using thermogravimetric analysis (TGA). Sheet resistance was measured for the composite with different ratios of PEDOT:PSS in which 2.5 wt.% of PEDOT PSS showed the lowest sheet resistance of 1.22 Ω/square. Electrochemical studies were carried out utilizing cyclic voltammetry and the composite cotton-based symmetric supercapacitor was found to achieve a specific capacitance of 296 F/g at 100 mA g−1. The intrinsic properties of the symmetric composite cotton supercapacitors were also verified by operating a light-emitting diode (LED).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, and J.M. Tour, 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013).

    Article  Google Scholar 

  2. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, and P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010).

    Article  CAS  Google Scholar 

  3. C. Meng, C. Liu, L. Chen, C. Hu, and S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 10, 4025–4031 (2010).

    Article  CAS  Google Scholar 

  4. J. Chen, K. Sheng, P. Luo, C. Li, and G. Shi, Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv. Mater. 24, 4569–4573 (2012).

    Article  CAS  Google Scholar 

  5. H. Jiang, P.S. Lee, and C. Li, 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6, 41–53 (2013).

    Article  CAS  Google Scholar 

  6. Z. Liu, Y. Xu, X. Zhang, Y. Pei, Y. Cheng, and W. Yin, Simulation study on the Characteristics of Carbon-Fiber-Reinforced Plastics in Electromagnetic Tomography Nondestructive Evaluation Systems. In Proceedings of International Conference on Measuring Technology and Mechatronics Automation vol 2010, pp. 382–385 (2010).

  7. J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, and Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328, 480–483 (2010).

    Article  CAS  Google Scholar 

  8. M. Endo, T. Takeda, Y. Kim, K. Koshiba, and K. Ishii, High power electric double layer capacitor (EDLC’s); from operating principle to pore size control in advanced activatedcarbons. Carbonletters 1, 117–128 (2001).

    Google Scholar 

  9. A. Motaghi, A. Hrymak, and G.H. Motlagh, Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.41744.

    Article  Google Scholar 

  10. R. Schueler, S.P. Joshi, and K. Schulte, Damage detection in CFRP by electrical conductivity mapping. Compos. Sci. Technol. 61, 921–930 (2001).

    Article  CAS  Google Scholar 

  11. N. Angelidis, C.Y. Wei, and P.E. Irving, Response to discussion of paper: the electrical resistance response of continuous carbon fibre composite laminates to mechanical strain. Compos. Part A Appl. Sci. Manuf. 37, 1495–1499 (2006).

    Article  Google Scholar 

  12. K.M. Batoo, N.M. Badawi, and S.F. Adil, Highly sensitive coated cotton thread for applications in soft circuit. J. Mater. Sci. Mater. Electron 32, 10880–10889 (2021).

    Article  CAS  Google Scholar 

  13. S.N. Vernon, A single-sided eddy current method to measure electrical resistivity. Mater. Eval. 46, 1581–1587 (1988).

    CAS  Google Scholar 

  14. J. Deng, J. Li, S. Song, Y. Zhou, and L. Li, Electrolyte-dependent supercapacitor performance on nitrogen-doped porous bio-carbon from gelatin. Nanomaterials 10, 353 (2020).

    Article  CAS  Google Scholar 

  15. M. Skunik-Nuckowska, P. Rączka, J. Lubera, A.A. Mroziewicz, S. Dyjak, P.J. Kulesza, I. Plebankiewicz, K.A. Bogdanowicz, and A. Iwan, Iodide electrolyte-based hybrid supercapacitor for compact photo-rechargeable energy storage system utilising silicon solar cells. Energies 14, 2708 (2021).

    Article  CAS  Google Scholar 

  16. C. Wang, K. Hu, Y. Liu, M.-R. Zhang, Z. Wang, and Z. Li, Flexible supercapacitors based on graphene/boron nitride nanosheets electrodes and PVA/PEI gel electrolytes. Materials 14, 1955 (2021).

    Article  CAS  Google Scholar 

  17. N.M. Badawi and K.M. Batoo, Conductive nanocomposite cotton thread strands for wire and industrial applications. J. Electron. Mater. 49, 6483–6491 (2020).

    Article  CAS  Google Scholar 

  18. C. Cochrane and A. Cayla, 5-Polymer-Based Resistive Sensors for Smart Textiles, Multidisciplinary Know-How for Smart-Textiles Developers. ed. T. Kirstein (United Kingdom: Woodhead Publishing, Sawston, 2013), pp. 129–153.

    Chapter  Google Scholar 

  19. H.J. In, S. Kumar, Y. Shao-Horn, and G. Barbastathis, Origami fabrication of nanostructured, three-dimensional devices: electrochemical capacitors with carbon electrodes. Appl. Phys. Lett. 88, 083104 (2006).

    Article  Google Scholar 

  20. C.M.A. Brett, Electrochemical impedance spectroscopy in the characterisation and application of modified electrodes for electrochemical sensors and biosensors. Molecules 27(5), 1497 (2022).

    Article  CAS  Google Scholar 

  21. R. Srinivasan and F. Fasmin, An Introduction to Electrochemical Impedance Spectroscopy (Boca Raton, FL: CRC Press, 2021), p.932.

    Book  Google Scholar 

  22. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, and G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9, 1872–1876 (2009).

    Article  CAS  Google Scholar 

  23. C. Du, J. Yeh, and N. Pan, High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16, 350–353 (2005).

    Article  CAS  Google Scholar 

  24. J. Cheng, J. Qiu, H. Ji, E. Wang, T. Takagi, and T. Uchimoto, Application of low frequency ECT method in noncontact detection and visualization of CFRP material. Compos. Part B Eng. 110, 141–152 (2017).

    Article  CAS  Google Scholar 

  25. H. Menana and M. Féliachi, Electromagnetic characterization of the CFRPs anisotropic conductivity: modeling and measurements. Eur. Phys. J. Appl. Phys. 53, 21101 (2011).

    Article  Google Scholar 

  26. I.M.D. Rosa, R. Mancinelli, F. Sarasini, M.S. Sarto, and A. Tamburrano, Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens. IEEE Trans. Electromagn. Compat. 51, 700–707 (2009).

    Article  Google Scholar 

  27. C. Du and N. Pan, Supercapacitors using carbon nanotubes films by electrophoretic deposition. J. Power Sources 160, 1487–1494 (2006).

    Article  CAS  Google Scholar 

  28. J. Ram, R.G. Singh, F. Singh, V. Kumar, V. Chauhan, R. Gupta, U. Kumar, B.C. Yadav, and R. Kumar, Development of WO3-PEDOT: PSS hybrid nanocomposites based devices for liquefied petroleum gas (LPG) sensor. J. Mater. Sci. Mater. Electron. 30, 13593–13603 (2019).

    Article  CAS  Google Scholar 

  29. Y. Kim, Y. Kim, and J.H. Kim, Highly conductive PEDOT:PSS thin films with two-dimensional lamellar stacked multi-layers. Nanomaterials 10(11), 2211 (2020).

    Article  CAS  Google Scholar 

  30. F. Alhashmi Alamer, and N.M. Badawi, Fully flexible, highly conductive threads based on single walled carbon nanotube (SWCNTs) and poly(3,4 ethylenedioxy thiophene) poly(styrenesulfonate) (PEDOT:PSS). Adv. Eng. Mater. 23(10), 2100448 (2020).

    Article  Google Scholar 

  31. L.V. Kayser and D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 31, 1806133 (2019).

    Article  Google Scholar 

  32. J.H. Min, M. Patel, and W.-G. Koh, Incorporation of conductive materials into hydrogels for tissue engineering applications. Polymers 10, 1078 (2018).

    Article  Google Scholar 

  33. J. Wang, G. Chen, and S. Song, Na-ion conducting gel polymer membrane for flexible supercapacitor application. Electrochim. Acta. 330, 135322 (2020).

    Article  CAS  Google Scholar 

  34. A. Ahmad, K.M. Isa, and Z. Osman, Conductivity and structural studies of plasticized polyacrylonitrile (PAN)-lithium triflate polymer electrolyte films. Sains Malaysiana 40, 691–694 (2011).

    CAS  Google Scholar 

  35. F.A. Aouada, M.R. Guilherme, G.M. Campese, E.M. Girotto, A.F. Rubira, and E.C. Muniz, Electrochemical and mechanical properties of hydrogels based on conductive poly(3,4-ethylene dioxythiophene)/poly(styrenesulfonate) and PAAm. Polym. Test. 25, 158–165 (2006).

    Article  CAS  Google Scholar 

  36. H. Miao, B. Chen, S. Li, X. Wu, Q. Wang, C. Zhang, Z. Sun, and H. Li, All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte. J. Power Sources. 450, 227653 (2020).

    Article  CAS  Google Scholar 

  37. Q. Rong, W. Lei, and M. Liu, Conductive hydrogels as smart materials for flexible electronic devices. Chem. A Eur. J. 24, 16930–16943 (2018).

    Article  CAS  Google Scholar 

  38. M.Y. Chong, C.-W. Liew, A. Numan, K. Yugal, K. Ramesh, H.M. Ng, T.V. Chong, and S. Ramesh, Effects of ionic liquid on the hydroxylpropylmethyl cellulose (HPMC) solid polymer electrolyte. Ionics 22, 2421–2430 (2016).

    Article  CAS  Google Scholar 

  39. G. Li, L. Gao, L. Li, and L. Guo, An electrochromic and self-healing multi-functional supercapacitor based on PANI/nw-WO2.7/Au NPs electrode and hydrogel electrolyte. J. Alloys Compd. 786, 40–49 (2019).

    Article  CAS  Google Scholar 

  40. C. Yang, P. Zhang, A. Nautiyal, S. Li, N. Liu, J. Yin, K. Deng, and X. Zhang, Tunable three-dimensional nanostructured conductive polymer hydrogels for energy-storage applications. ACS Appl. Mater. Interfaces 11, 4258–4267 (2019).

    Article  CAS  Google Scholar 

  41. F. Qi, Z. Xia, R. Sun, X. Sun, X. Xu, W. Wei, S. Wang, and G. Sun, Graphitization induced by KOH etching for the fabrication of hierarchical porous graphitic carbon sheets for high performance supercapacitors. J. Mater. Chem. A. 6, 14170–14177 (2018).

    Article  CAS  Google Scholar 

  42. P. Simon and A.F. Burke, Nanostructured carbons: double-layer capacitance and more. Electrochem. Soc. Interface 17, 38–43 (2008).

    Article  CAS  Google Scholar 

  43. A.G. Pandolfo and A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006).

    Article  CAS  Google Scholar 

  44. N. Ben Messaoud, M.E. Ghica, C. Dridi, M.B. Ali, and C.M.A. Brett, Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sens. Actuat. B Chem. 253, 513–522 (2017).

    Article  CAS  Google Scholar 

  45. C.M.A. Brett, A.N.A. Maria, and O. Brett, Principles, methods, and applications. Electrochemistry 67(2), 444 (1993).

    Google Scholar 

  46. D. Wang, S. Wang, D.D.L. Chung, and J.H. Chung, Sensitivity of the two-dimensional electric potential/resistance method for damage monitoring in carbon fiber polymer-matrix composite. J. Mater. Sci. 41, 4839–4846 (2006).

    Article  CAS  Google Scholar 

  47. A. Todoroki, Y. Tanaka, and Y. Shimamura, Multi-prove electric potential change method for delamination monitoring of graphite/epoxy composite plates using normalized response surfaces. Compos. Sci. Technol. 64, 749–758 (2004).

    Article  CAS  Google Scholar 

  48. J. Wang, X. Yu, C. Wang, K. Xiang, M. Deng, and H. Yin, PAMPS/MMT composite hydrogel electrolyte for solid-state supercapacitors. J. Alloys Compd. 709, 596–601 (2017).

    Article  CAS  Google Scholar 

  49. M.G. Saborío, Š Zukić, S. Lanzalaco, J. Casanovas, J. Puiggalí, F. Estrany, and C. Alemán, Prototyping flexible supercapacitors produced with biohydrogel. Mater. Today Commun. 16, 60–70 (2018).

    Article  Google Scholar 

  50. Z. Wang, F. Tao, and Q. Pan, A self-healable polyvinyl alcohol-based hydrogel electrolyte for smart electrochemical capacitors. J. Mater. Chem. A 4, 17732–17739 (2016).

    Article  CAS  Google Scholar 

  51. F. Alhashmi Alamer and N.M. Badawi, Manufacturing organic environmentally friendly electrical circuits using the composites’ single-walled carbon nanotubes and pedot:PSS. Energy Technol. 10(2), 2100830 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Universiti Malaya for providing the facilities to conduct the project. No funding involved.

Author information

Authors and Affiliations

Authors

Contributions

Nujud Badawi: Conceptualization, Methodology, Writing–review & editing. Mamta Bhatia:Writing & editing. Syed Farooq Adil: review & editing. Mujeeb Khan: review. S. Ramesh: Supervision, review & editing. K. Ramesh: Supervision, review & editing.

Corresponding author

Correspondence to S. Ramesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nujud Badawi, M., Bhatia, M., Ramesh, S. et al. Enhancement of the Performance Properties of Pure Cotton Fabric by Incorporating Conducting Polymer (PEDOT:PSS) for Flexible and Foldable Electrochemical Applications. J. Electron. Mater. 52, 2201–2215 (2023). https://doi.org/10.1007/s11664-022-10170-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10170-3

Keywords

Navigation