Skip to main content
Log in

Porous Silicon Composite ZnO Nanoparticles as Supercapacitor Electrodes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Porous electrode composite materials with a large surface area and suitable pore size, as well as a short diffusion distance of electrolyte ions in the pore channels, are greatly desired for supercapacitor electrodes. Porous silicon composite zinc oxide nanoparticles with a high cycling performance and stability have been prepared by vacuum filtration, combined with homogenizing and hydrothermal methods. The composite material has a 3.9 mF/g specific capacitance, which is an increase of 40 times when compared to pure porous silicon. The results show that the composite materials can effectively passivate the porous silicon surface, improving the porous silicon capacitor's characteristics and stability. This investigation is helpful in understanding the surface modification of porous silicon, and also indicates a potential method for designing porous electrode composite materials based on porous silicon and zinc oxide nanoparticles.

Graphical Abstract

The vacuum filtration was chosen to prepare porous silicon composite ZnO nanoparticles materials. It shows that ZnO adheres to the surface of the porous silicon and the inside of the pore walls more uniformly. The specific capacitance of the composite material is 3.9 mF/g, which is 40 times higher than that of pure porous silicon. The modified electrode not only has improved capacitance characteristics but also has good stability. Testing the impedance of the electrode shows that the modified electrode resistance has been improved to a certain extent, while the surface stability and the charge and discharge performance of the composite electrode have been greatly improved. Experiments showed that the use of ZnO can effectively improve the electrical properties of porous silicon, which provides ideas and experimental references for further expanding the application fields of porous silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Ciplak and N. Yildiz, Polyaniline-Au nanocomposite as electrode material for supercapacitor applications. Synth. Met. 256, 116150 (2019).

    Article  CAS  Google Scholar 

  2. D.W. Wang, Y.G. Min, Y.H. Yu, and B. Peng, A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. J. Colloid Interface Sci. 417, 270 (2014).

    Article  CAS  Google Scholar 

  3. P. Simon and Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008).

    Article  CAS  Google Scholar 

  4. L.L. Zhang and X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009).

    Article  CAS  Google Scholar 

  5. X.X. Li, S.J. Xiao, Y.N. Ma, and S.J. Luo, Sudy on electrochemical properties of MXene based microsupercapacitors with high performance. J. Synth. Cryst. 49, 526 (2020).

    CAS  Google Scholar 

  6. Y.H. Wang, R.N. Liu, Y.D. Tian, Z. Sun, Z.H. Huang, X.L. Wu, and B. Li, Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chem. Eng. J. 384, 123263 (2020).

    Article  CAS  Google Scholar 

  7. P.M. Yu, M. Coll, R. Amade, I. Alshaikh, F. Pantoja-Suarez, E. Pascual, J.L. Andujar, and E.B. Serra, Homogeneous Fe2O3 coatings on carbon nanotube structures for supercapacitors. Dalton. Trans. 49, 4136 (2020).

    Article  CAS  Google Scholar 

  8. S. Yaglikci, Y. Gokce, E. Yagmur, and Z. Aktas, The performance of sulphur doped activated carbon supercapacitors prepared from waste tea. Environ. Technol. 41, 36 (2020).

    Article  CAS  Google Scholar 

  9. K. Grigoras, J. Keskinen, L. Gronberg, E. Yli-Rantala, S. Laakso, H. Valimaki, P. Kauranen, J. Ahopelto, and M. Prunnila, Conformal titanium nitride in a porous silicon matrix: a nanomaterial for in-chip supercapacitors. Nano Energy 26, 340 (2016).

    Article  CAS  Google Scholar 

  10. K.P. Konin, O.Y. Gudymenko, V.P. Klad’ko, O.O. Lytvynenko, and D.V. Morozovs’ka, Residual deformations and mechanical stresses in macroporous and nonporous silicon under normal etching conditions. J. Electron. Mater. 49, 5240 (2020).

    Article  CAS  Google Scholar 

  11. S.E. Rowlands, R.J. Latham, and W.S. Schlindwein, Supercapacitor devices using porous silicon electrodes. Ionics 5, 144 (1999).

    Article  CAS  Google Scholar 

  12. H. Hu, X.G. Sun, W. Chen, C.C. Wei, Y.P. Huang, and G.D. Liang, Lithium-Ion capacitor with three-dimensional porous HAC/SP/PVDF as positive electrode. J. Electron. Mater. 48, 11 (2019).

    Google Scholar 

  13. R.J. Riikonen, M. Salomaki, J. van Wonderen, M. Kemell, W. Xu, O. Korhonen, M. Ritala, F. MacMillan, J. Salonen, and V.P. Lehto, Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods. Langmuir 28, 10573 (2012).

    Article  CAS  Google Scholar 

  14. F. Thissandier, L. Dupre, P. Gentile, T. Brousse, G. Bidan, D. Buttard, and S. Sadki, Ultra-dense and highly doped SiNWs for micro-supercapacitors electrodes. Electrochim. Acta 117, 159 (2014).

    Article  CAS  Google Scholar 

  15. J.A. Yan, E. Khoo, A. Sumboja, and P.S. Lee, Facile coating of man-ganese oxide on tin oxide nanowires with high-performance capac-itive behavior. ACS Nano 4, 4247 (2010).

    Article  CAS  Google Scholar 

  16. S. Najib and E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 1, 2817 (2019).

    Article  Google Scholar 

  17. B. Pant, M. Park, G.P. Ojha, J. Park, Y.S. Kuk, E.J. Lee, H.Y. Kim, and S.J. Park, Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors. J. Colloid Interface Sci. 522, 40 (2018).

    Article  CAS  Google Scholar 

  18. A.U. Ameen, I.D. Yildirim, F. Bakan, and E. Erdem, ZnO and MXenes as electrode materials for supercapacitor devices. Beilstein J. Nanotech. 12, 49 (2021).

    Article  Google Scholar 

  19. S. Najib, F. Bakan, N. Abdullayeva, R. Bahariqushchi, S. Kasap, G. Franzo, M. Sankir, N.D. Sankir, S. Mirabella, and E. Erdem, Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices. Nanoscale 12, 16162 (2020).

    Article  CAS  Google Scholar 

  20. S. Kasap, I.I. Kaya, S. Repp, and E. Erdem, Superbat: battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects. Nanoscale Adv. 1, 2586 (2019).

    Article  CAS  Google Scholar 

  21. M. Toufani, S. Kasap, A. Tufani, F. Bakan, S. Weber, and E. Erdem, Synergy of nano-ZnO and 3D-graphene foam electrodes for asymmetric supercapacitor devices. Nanoscale 12, 12790 (2020).

    Article  CAS  Google Scholar 

  22. F. Naeem, S. Naeem, Z. Zhao, G.Q. Shu, J. Zhang, Y.F. Mei, and G.S. Huang, Atomic layer deposition synthesized ZnO nanomembranes: a facile route towards stable supercapacitor electrode for high capacitance. J. Power Sources 451, 227740 (2020).

    Article  CAS  Google Scholar 

  23. E. Erdem, Microwave power, temperature, atmospheric and light dependence of intrinsic defects in ZnO nanoparticles: a study of electron paramagnetic resonance (EPR) spectroscopy. J. Alloy. Compd. 605, 34 (2014).

    Article  CAS  Google Scholar 

  24. H. Kaftelen, K. Ocakoglu, R. Thomann, S. Tu, S. Weber, and E. Erdem, EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals. Phys. Rev. B 86, 014113 (2012).

    Article  Google Scholar 

  25. E. Samuel, B. Joshi, Y.I. Kim, A. Aldalbahi, M. Rahaman, and S.S. Yoon, ZnO/MnOx nanoflowers for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 8, 3697 (2020).

    Article  CAS  Google Scholar 

  26. P. Anandhi, V.J.S. Kumar, and S. Harikrishnan, Improved electrochemical behavior of metal oxides-based nanocomposites for supercapacitor. Funct. Mater. Lett. 12, 1950064 (2019).

    Article  CAS  Google Scholar 

  27. M. Taherkhani, N. Naderi, P. Fallahazad, M.J. Eshraghi, and A. Kolahi, Development and optical properties of ZnO nanoflowers on porous silicon for photovoltaic applications. J. Electron. Mater. 48, 6647 (2019).

    Article  CAS  Google Scholar 

  28. C.A. Betty, K. Sehra, K.C. Barick, and S. Choudhury, Facile preparation of silicon/ZnO thin film heterostructures and ultrasensitive toxic gas sensing at room temperature: substrate dependence on specificity. Anal. Chim. Acta. 1039, 82 (2018).

    Article  CAS  Google Scholar 

  29. T.V.K. Karthik, L. Martinez, and V. Agarwal, Porous silicon ZnO/SnO2 structures for CO2 detection. J. Alloy. Compd. 731, 853 (2018).

    Article  CAS  Google Scholar 

  30. M. Pavlenko, V. Myndrul, G. Gottardi, E. Coy, M. Jancelewicz, and I. Iatsunskyi, Porous silicon-zinc oxide nanocomposites prepared by atomic layer depo-sition for biophotonic applications. Materials 13, 1987 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Natural Science Foundation of Jiangsu Province (BK20180098), National Laboratory of Solid State Microstructures, Nanjing University (M32045, M33042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, D., Wang, Y., Hu, Z. et al. Porous Silicon Composite ZnO Nanoparticles as Supercapacitor Electrodes. J. Electron. Mater. 51, 2964–2970 (2022). https://doi.org/10.1007/s11664-022-09555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09555-1

Keywords

Navigation