Skip to main content
Log in

Optical and Electrical Properties of Pyrene–Imine Organic Interface Layer Based on p-Si

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present study, 1,4-phenylenebis-1-(pyren-1-yl)methanimine derivative 3 (C40H24N2) was synthesized in high yield by condensation reaction of pyrene-1-carbaldehyde (1) with benzene-1,4-diamine (2). The structures of the obtained organic compound 3 were determined by nuclear magnetic resonance (NMR), infrared (IR), and high-resolution mass spectrometry (HRMS) spectroscopic techniques. An Al/C40H24N2/p-Si device was then fabricated using this pyrene–imine-based organic material 3 at the interface. The organic layer was coated on p-Si by the spin coating method, and ohmic and rectifier contacts were deposited by thermal evaporation. Besides optical measurements, such as ultraviolet (UV) absorbance and NMR, the electrical and photovoltaic properties were investigated by current–voltage (IV) measurements in the dark and under different illumination conditions and capacitance–conductance–voltage (CGV) measurements at various frequencies. The electrical parameters of the device, such as ideality factor, barrier height, and series resistance, were calculated using three methods: thermionic emission theory (TE), Cheung method, and Norde functions. Using the TE method, the ideality factor value of the six devices (D1 to D6) obtained by coating the C40H24N2 organic layer between the metal and the semiconductor was 2.02 to 2.06, and the barrier height value increased by between 0.77 eV and 0.78 eV compared with the reference device. According to these results, the organic interface coated between the metal and semiconductor increased the barrier height and rectifying ratio of the device. In addition to its rectification feature, the Al/C40H24N2/p-Si/Al device showed photodiode characteristics. Although its solar cell parameters were low, these photodiode characteristics indicate that this device could be used in optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Pierre, I. Deckman, P.B. Lechêne, and A.C. Arias, Adv. Mater. 27, 6411 (2015).

    Article  CAS  Google Scholar 

  2. C. Reese, M. Roberts, M.M. Ling, and Z. Bao, Mater. Today 7, 20 (2004).

    Article  CAS  Google Scholar 

  3. D. Elkington, N. Cooling, W. Belcher, P.C. Dastoor, and X. Zhou, Electronics 3, 234 (2014).

    Article  CAS  Google Scholar 

  4. O. Sahin, S. Kutluay, S. Horoz, and M.S. Ece, Environ. Sci. Pollut. Res. 28, 5231 (2021).

    Article  CAS  Google Scholar 

  5. M. Erdogan, and S. Horoz, J. Chem. Res. 45, 207 (2021).

    Article  CAS  Google Scholar 

  6. A. Yesildag, Chem. Pap. 75, 4949 (2021).

    Article  CAS  Google Scholar 

  7. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T.M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.L. Brédas, S.R. Marder, A. Kahn, and B. Kippelen, Science 336, 327 (2012).

    Article  CAS  Google Scholar 

  8. I.H. Campbell, and B.K. Crone, Appl. Phys. Lett. 101, 023301 (2012).

    Article  CAS  Google Scholar 

  9. F. Yakuphanoglu, Synth. Met. 157, 859 (2007).

    Article  CAS  Google Scholar 

  10. S. Tedde, E.S. Zaus, J. Fürst, D. Henseler, and P. Lugli, IEEE Electron Device Lett. 28, 893 (2007).

    Article  CAS  Google Scholar 

  11. J. Yamaura, Y. Muraoka, T. Yamauchi, T. Muramatsu, and Z. Hiroi, Appl. Phys. Lett. 83, 2097 (2003).

    Article  CAS  Google Scholar 

  12. J. Lee, D.K. Hwang, C.H. Park, S.S. Kim, and S. Im, Thin Solid Films 451, 12 (2004).

    Article  CAS  Google Scholar 

  13. E. Gal, L. Gǎinǎ, C. Cristea, V. Munteanu, and L. Silaghi-Dumitrescu, J. Electroanal. Chem. 770, 14 (2016).

    Article  CAS  Google Scholar 

  14. M. Koole, R. Frisenda, M.L. Petrus, M.L. Perrin, H.S.J. Van Der Zant, and T.J. Dingemans, Org. Electron. 34, 38 (2016).

    Article  CAS  Google Scholar 

  15. Y. Xin, and J. Yuan, Polym. Chem. 3, 3045 (2012).

    Article  CAS  Google Scholar 

  16. M.L. Petrus, R.K.M. Bouwer, U. Lafont, S. Athanasopoulos, N.C. Greenham, and T.J. Dingemans, J. Mater. Chem. A 2, 9474 (2014).

    Article  CAS  Google Scholar 

  17. D. Sęk, M. Siwy, J.G. Małecki, S. Kotowicz, S. Golba, E.M. Nowak, J. Sanetra, and E. Schab-Balcerzak, Spectrochim. Acta A Mol. Biomol Spectrosc. 175, 168 (2017).

    Article  CAS  Google Scholar 

  18. J.S.S. De Melo, T. Costa, C.S. De Castro, and A.L. Maçanita, Photochemistry 41, 58 (2013).

    Google Scholar 

  19. D. Pinheiro, C.S. De Castro, J.S. Seixas De Melo, E. Oliveira, C. Nuñez, A. Fernández-Lodeiro, J.L. Capelo, and C. Lodeiro, Dyes Pigm. 110, 152 (2014).

    Article  CAS  Google Scholar 

  20. M.D. Kaya, B.C. Sertel, N.A. Sonmez, M. Cakmak, and S. Ozcelik, Appl. Phys. A 126, 830 (2020).

    Article  CAS  Google Scholar 

  21. P.R.S. Reddy, V. Janardhanam, I. Jyothi, C.S. Harsha, V.R. Reddy, S. Lee, J. Won, and C. Choi, Appl. Phys. A 124, 115 (2018).

    Article  CAS  Google Scholar 

  22. Z. Caldiran, J. Alloys Compd. 865, 158856 (2021).

    Article  CAS  Google Scholar 

  23. Z. Orhan, E. Cinan, Z. Caldıran, Y. Kurucu, and E. Das, J. Mater. Sci. Mater. Electron. 31, 12715 (2020).

    Article  CAS  Google Scholar 

  24. M. Simon, Sze, Physics of Semiconductor Devices, 2nd ed., (Hoboken: Wiley, 1979).

    Google Scholar 

  25. A. Karabulut, H. Efeoglu, and A. Turut, J. Semicond. 38, 054003 (2017).

    Article  CAS  Google Scholar 

  26. A. Türüt, Turkish J. Phys. 44, 302 (2020).

    Google Scholar 

  27. L.B. Tasyurek, M. Sevim, Z. Caldiran, S. Aydogan, and O. Metin, Mater. Res. Express 5, 015060 (2018).

    Article  CAS  Google Scholar 

  28. S. Altindal, S. Karadeniz, N. Tugluoglu, and A. Tataroglu, Solid. State. Electron. 47, 1847 (2003).

    Article  CAS  Google Scholar 

  29. O. Ongun, E. Tasci, M. Emrullahoglu, U. Akin, N. Tugluoglu, and S. Eymur, J. Mater. Sci.: Mater. Electron. 32, 15707 (2021).

    CAS  Google Scholar 

  30. D.E. Yıldız, S. Karadeniz, and H.H. Gullu, J. Mater. Sci. Mater. Electron. 32, 20130 (2021).

    Article  CAS  Google Scholar 

  31. H. Patel, K. Patel, A. Patel, H. Jagani, K.D. Patel, G.K. Solanki, and V.M. Pathak, J. Electron. Mater. 50, 5217 (2021).

    Article  CAS  Google Scholar 

  32. S. Altındal, O. Sevgili, and Y. Azizian-Kalandaragh, IEEE Trans. Electron Devices 66, 3103 (2019).

    Article  Google Scholar 

  33. N. Tugluoglu, S. Karadeniz, and S. Altındal, Appl. Surf. Sci. 239, 481 (2005).

    Article  CAS  Google Scholar 

  34. S.M. Sze, Physics of Semiconductor Devices, 2nd ed., (Hoboken: A Wiley-Interscience Publication, 1981).

    Google Scholar 

  35. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  CAS  Google Scholar 

  36. E.H. Rhoderick, and R.H. Williams, Metal-Semiconductor Contacts (Oxford: Clarendon Press, 1988).

    Google Scholar 

  37. S.K. Cheung, and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  CAS  Google Scholar 

  38. S. Karatas, S. Altindal, A. Turut, and A. Ozmen, Appl. Surf. Sci. 217, 250 (2003).

    Article  CAS  Google Scholar 

  39. L.D. Rao, and V.R. Reddy, AIP Conf. Proc. 120020, 120020 (2016).

    Article  Google Scholar 

  40. S. Karatas, N. Yildirim, and A. Turut, Superlattices Microstruct. 64, 483 (2013).

    Article  CAS  Google Scholar 

  41. I. Missoum, Y.S. Ocak, M. Benhaliliba, C.E. Benouis, and A. Chaker, Synth. Met. 214, 76 (2016).

    Article  CAS  Google Scholar 

  42. A. Kocyigit, I. Orak, Z. Caldıran, and A. Turut, J. Mater. Sci. Mater. Electron. 28, 17177 (2017).

    Article  CAS  Google Scholar 

  43. A. Turut, M. Coskun, F.M. Coskun, O. Polat, Z. Durmus, M. Caglar, and H. Efeoglu, J. Alloys Compd. 782, 566 (2019).

    Article  CAS  Google Scholar 

  44. S. Karatas, Microelectron. Eng. 87, 1935 (2010).

    Article  CAS  Google Scholar 

  45. C. Bilkan, S. Altındal, and Y. Azizian-Kalandaragh, Phys. B Condens. Matter 515, 28 (2017).

    Article  CAS  Google Scholar 

  46. Z. Caldıran, J. Alloys Compd. 816, 152601 (2020).

    Article  CAS  Google Scholar 

  47. O. Sevgili, Y. Azizian-Kalandaragh, and S. Altındal, Phys. B Condens. Matter 587, 412122 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Musa Erdoğan or İkram Orak.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeşildağ, A., Erdoğan, M., Sevgili, Ö. et al. Optical and Electrical Properties of Pyrene–Imine Organic Interface Layer Based on p-Si. J. Electron. Mater. 50, 6448–6458 (2021). https://doi.org/10.1007/s11664-021-09178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09178-y

Keywords

Navigation