Skip to main content
Log in

Preparation and Electrical Properties of 4-allyloxy-2-hydroxybenzophenone Grafted Polypropylene for HVDC Cables

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polypropylene (PP) is considered a promising material for eco-friendly high-voltage direct current (HVDC) cable insulation. However, PP is prone to space charge accumulation under direct current (DC) electric stress, which limits its applications. In this study, 4-allyloxy-2-hydroxybenzophenone (AHB) with polar functional groups and a conjugated structure was grafted onto PP via melt grafting to improve its electrical properties. The effects of several reaction variables, specifically initiator and monomer content, reaction temperature, rotor speed, and grafting yield time were studied, and the optimal grafting conditions were determined. Evidence of grafting was examined by Fourier transform infrared (FTIR) spectroscopy. Moreover, the space charge characteristics, volume resistivity, and DC breakdown strength of the grafted PP were also studied. The FTIR results demonstrated that the AHB monomer was successfully grafted onto PP, and the maximum grafting yield obtained under the optimal grafting conditions was 0.94%. Furthermore, when the grafting yield was 0.73%, the grafted PP effectively inhibited space charge accumulation and exhibited the highest volume resistivity and DC breakdown strength. Thus, this work provides useful ideas for the design and development of environmentally friendly polymer insulating materials for HVDC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Zhou, S.M. Peng, J. Hu, and J.L. He, Polymeric Insulation Materials for HVDC Cables: Development, Challenges and Future Perspective IEEE Trans. Dielectr. Electr. Insul. 24, 1308 (2017).

    Article  CAS  Google Scholar 

  2. G. Mazzanti, and M. Marzinotto, Extruded Cables for High Voltage Direct Current Transmission: Advances in Research and Development (Hoboken: Wiley, 2013).

    Book  Google Scholar 

  3. M.Y. Ou, Y. Xue, and X.P. Zhang, lterative DC Optimal Power Flow Considering Transmission Network Loss Electr. Power Compon. Syst. 44, 955965 (2016).

    Article  Google Scholar 

  4. J.L. He, B. Dang, Y. Zhou, and J. Hu, Reviews on Research Progress and Key Technology in Extruded Cables for HVDC Transmission High Voltage Engineering. 41, 1417 (2015).

    CAS  Google Scholar 

  5. M. Fu, G. Chen, L.A. Dissado, and J.C. Fothergill, Influence of Thermal Treatment and Residues on Space Charge Accumulation in XLPE for DC Power Cable Application IEEE Trans. Dielectr. Electr. Insul. 14, 53 (2007).

    Article  CAS  Google Scholar 

  6. G. Teyssedre, C. Laurent, G.C. Montanari, A. Campus, and U.H. Nilsson, From LDPE to XLPE: Investigating the Change of Electrical Properties Part I Space Charge, Conduction and Lifetime IEEE Trans. Dielectr. Electr. Insul. 12, 447 (2005).

    Article  CAS  Google Scholar 

  7. X.P. Yuan, and T.C.M. Chung, Cross-Linking Effect on Dielectric Properties of Polypropylene Thin Films and Applications in Electric Energy Storage Appl. Phys. Lett. 98, 062901 (2011).

    Article  Google Scholar 

  8. B. Dang, J. Hu, Y. Zhou, and J.L. He, Remarkably Improved Electrical Insulating Performances of Lightweight Polypropylene Nanocomposites With Fullerene J. Phys. D: Appl. Phys. 50, 455303 (2017).

    Article  Google Scholar 

  9. T. Andritsch, A. Vaughan, and G.C. Stevens, Novel Insulation Materials For High Voltage Cable Systems IEEE Electr. Insul. Mag. 33, 27 (2017).

    Article  Google Scholar 

  10. I.L. Hosier, A.S. Vaughan, and S.G. Swingler, An Investigation of the Potential of Ethylene Vinyl Acetate/Polyethylene Blends for Use in Recyclable High Voltage Cable Insulation Systems J. Mater. Sci. 45, 2747 (2010).

    Article  CAS  Google Scholar 

  11. I.L. Hosier, A.S. Vaughan, and S.G. Swingler, An Investigation of the Potential of Polypropylene and its Blends For Use in Recyclable High Voltage Cable Insulation Systems J. Mater. Sci. 46, 4058 (2011).

    Article  CAS  Google Scholar 

  12. X.Y. Huang, Y.Y. Fan, J. Zhang, and P.K. Jiang, Polypropylene Based Thermoplastic Polymers for Potential Recyclable HVDC Cable Insulation Applications IEEE Trans. Dielectr. Electr. Insul. 24, 1446 (2017).

    Article  CAS  Google Scholar 

  13. B. Dang, J.L. He, J. Hu, and Y. Zhou, Tailored sPP/Silica Nanocomposite for Ecofriendly Insulation of Extruded HVDC Cable J. Nanomater. 2015, 686248 (2015).

    Google Scholar 

  14. W.F. Liu, L. Cheng, and S.T. Li, Review of Electrical Properties for Polypropylene Based Nanocomposite Compos. Commun. (2018). https://doi.org/10.1016/j.coco.2018.10.007.

    Article  Google Scholar 

  15. Y. Zhou, J. Hu, X. Chen, F. Yu, and J.L. He, Thermoplastic Polypropylene/Aluminum Nitride Nanocomposites with Enhanced Thermal Conductivity and Low Dielectric Loss IEEE Trans. Dielectr. Electr. Insul. 23, 2768 (2017).

    Article  Google Scholar 

  16. Q.Y. Guo, X.T. Li, W.F. Li, and Z.H. Yao, The Balanced Insulating Performance and Mechanical Property of PP by Introducing PP-g-PS Graft Copolymer and SEBS Elastomer Ind Eng Chem Res. 57, 6696 (2018).

    Article  CAS  Google Scholar 

  17. Y. Zhou, B. Dang, H.M. Wang, J.P. Liu, Q. Li, J. Hu, and J.L. He, Polypropylene-Based Ternary Nanocomposites for Recyclable High-Voltage Direct-Current Cable Insulation Compos. Sci. Technol. (2018). https://doi.org/10.1016/j.compscitech.2018.06.022.

    Article  Google Scholar 

  18. S.X. Hu, Y. Zhou, C. Yuan, W. Wang, J. Hu, Q. Li, and J.L. He, Surface-Modification Effect of MgO Nanoparticles on the Electrical Properties of Polypropylene Nanocomposite High Volt. (2020). https://doi.org/10.1049/hve.2019.0159.

    Article  Google Scholar 

  19. Q. Cheng, J.W. Zha, J.T. Zhai, D.L. Zhang, X.M. Bian, G. Chen, and Z.M. Dang, Improved Space Charge Suppression in PP/SEBS Nanocomposites by Controlling MgO Nanoparticles with Abundant Surface Defects Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5123208.

    Article  Google Scholar 

  20. Y. Zhou, J. Hu, B. Dang, and J.L. He, Effect of Different Nanoparticles on Tuning Electrical Properties of Polypropylene Nanocomposites IEEE Trans. Dielectr. Electr. Insul. 24, 1380 (2017).

    Article  CAS  Google Scholar 

  21. J. L. He and Y. Zhou, Progress in eco-friendly high voltage cable insulation materials. In 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Xi’an, China, 2018.

  22. J.W. Zha, Y.H. Wu, S.J. Wang, D.H. Wu, H.D. Yan, and Z.M. Dang, Improvement of Space Charge Suppression of Polypropylene for Potential Application in HVDC Cables IEEE Trans. Dielectr. Electr. Insul. 23, 2337 (2016).

    Article  CAS  Google Scholar 

  23. S.N. Sathe, G.S. Rao, and S. Devi, Grafting of Maleic Anhydride Onto Polypropylene: Synthesis and Characterization J. Appl. Polym. Sci. 53, 239–245 (1994). https://doi.org/10.1002/app.1994.070530212.

    Article  CAS  Google Scholar 

  24. N. Işıklan, F. Kurşun, and M. İnal, Graft Copolymerization of Itaconic Acid Onto Sodium Alginate Using Benzoyl Peroxide Carbohydr. Polym. 79, 665 (2010).

    Article  Google Scholar 

  25. H. Cartier, and G.H. Hu, Plastification or Melting: A Critical Process for Free Radical Grafting in Screw Extruders Polym. Eng. Sci. 38, 177 (1998).

    Article  CAS  Google Scholar 

  26. T.H. Kim, and N.G. Lee, Melt-Grafting of Maleimides Having Hindered Phenol Group Onto Polypropylene Bull Korean Chem. Soc. 24, 1809 (2003).

    Article  CAS  Google Scholar 

  27. Z. Song, and W.E. Baker, Grafting of 2-(Dimethylamino) Ethyl Methacrylate on Linear Low Density Polyethylene in the Melt Angew Makromol Chem. 181, 1 (1990).

    Article  CAS  Google Scholar 

  28. S.H.P. Bettini, and J.A.M. Agnelli, Grafting of Maleic Anhydride Onto Polypropylene by Reactive Extrusion J. Appl. Polym. Sci. 85, 2706 (2002).

    Article  CAS  Google Scholar 

  29. S. Kram, Y. Yang, X. Zhong, S. Bhutta, G. Wu, J. Castellon, and K. Zhou, Influence of Nano Layer Structure of Polyimide Film on Space Charge Behavior and Trap Levels IEEE Trans. Dielectr. Electr. Insul. 25, 1461 (2018).

    Article  Google Scholar 

  30. H. Yuan, Y. Zhou, Y.J. Zhu, S.X. Hu, C. Yuan, W.B. Song, Q. Shao, Q. Zhang, J. Hu, Q. Li, and J.L. He, Origins and Effects of Deep Traps in Functional Group Grafted Polymeric Dielectric Materials J. Phys. D: Appl. Phys. 53, 475301 (2020).

    Article  CAS  Google Scholar 

  31. J. Li, C.L. Han, B.X. Du, and T. Takada, Deep Trap Sites Suppressing Space Charge Injection in Polycyclic Aromatic Compounds Doped XLPE Composite IET Nanodielectr. 3, 10 (2020).

    Article  Google Scholar 

  32. W. Dong, X. Wang, Z.X. Jiang, B. Tian, Y.G. Liu, J.M. Yang, and W. Zhou, Acetylated SEBS Enhanced DC Insulation Performances of Polyethylene Polym. 11, 1033 (2019).

    Article  Google Scholar 

  33. H. Zhang, Y. Shang, H. Zhao, B.Z. Han, and Z.S. Li, Mechanisms on Electrical Breakdown Strength Increment of Polyethylene by Acetophenone and its Analogues Addition: A Theoretical Study J. Mol. Model. 19, 4477 (2013).

    Article  CAS  Google Scholar 

  34. G.C. Montanari, Bringing an Insulation to Failure: The Role Of Space Charge IEEE Trans. Dielectr. Electr. Insul. 18, 339 (2011).

    Article  Google Scholar 

  35. Z. Wei, H. Liu, L. Yu, S. Xiao, Y. Hou, and X. Chen, Delocalized Aromatic Molecules with Matched Electron-Donating and Electron-Withdrawing Groups Enhancing Insulating Performance of Polyethylene Blends J. Appl. Polym. Sci. (2020). https://doi.org/10.1002/app.49185.

    Article  Google Scholar 

  36. X.R. Chen, L.W. Yu, C. Dai, A. Paramane, H.Y. Liu, Z.J. Wei, and Y. Tanaka, Enhancement of Insulating Properties of Polyethylene Blends by Delocalization Type Voltage Stabilizers IEEE Trans. Dielectr. Electr. Insul. 26, 2041 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 51677045) and Heilongjiang Provincial Natural Science Foundation of China (LH2020E089). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Weng, L. & Zhang, W. Preparation and Electrical Properties of 4-allyloxy-2-hydroxybenzophenone Grafted Polypropylene for HVDC Cables. J. Electron. Mater. 50, 6228–6236 (2021). https://doi.org/10.1007/s11664-021-09147-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09147-5

Keywords

Navigation