Skip to main content
Log in

Enhanced Electrical Properties of PVDF Thin Film by Addition of NaCl by Near-Electric-Field 3D Printing

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polyvinylidene fluoride (PVDF) thin films with high β-phase content exhibit excellent piezoelectric and dielectric properties. In this work, PVDF–NaCl composite film with high β-phase content was prepared by near-electric-field three-dimensional (3D) printing. The mechanism of the influence of NaCl on the nucleation and phase transition of the PVDF thin films was revealed based on the synergistic effect of the electric field and salt addition. The composite films were characterized by scanning electron microscopy, fourier transform infrared spectroscopy, x-ray diffraction analysis, and measurements of electrical properties. The results showed that NaCl can increase the density of the membrane, while the β-phase content and dielectric properties of the PVDF composite membrane are positively correlated with the amount of NaCl added. The β-phase content reached a maximum value of 52.68% when the amount of NaCl added was 0.05% by weight. The dielectric constant of the PVDF composite film increased with increasing NaCl content. The electrical properties also indicated that PVDF composite film with higher NaCl content showed higher electrical output voltage, while the response voltage of the composite film with 0.05 wt.% NaCl was higher than that of pure PVDF film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Pramanik, and A. Arockiarajan, Smart Mater. Struct. 28, 103001 (2019).

    Article  CAS  Google Scholar 

  2. X. Pan, Z. Wang, Z. Cao, S.Q. Zhang, Y.H. He, Y.D. Zhang, K.S. Chen, Y.M. Hu, and H.S. Gu, Smart Mater. Struct. 25, 105010 (2016).

    Article  Google Scholar 

  3. Z. Wang, W. Zhou, X. Sui, and L. Dong, J. Reinf. Plast. Compos. 34, 1126 (2015).

    Article  Google Scholar 

  4. P. Martins, A.C. Lopes, and S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014).

    Article  CAS  Google Scholar 

  5. C. Bowen, and C. Wan, J. Mater. Chem. A 5, 3091 (2017).

    Article  Google Scholar 

  6. A. Baji, Y.W. Mai, Q. Li, and L. Yun, Nanoscale 3, 3068 (2011).

    Article  CAS  Google Scholar 

  7. M.A. Mohammad, S. Kamyar, and N. Minoo, Compos. Sci. Technol. 138, 49 (2017).

    Article  Google Scholar 

  8. J.S. Andrew, and D.R. Clarke, Langmuir 24, 8435 (2008).

    Article  CAS  Google Scholar 

  9. H.H. Singh, and S. Singh, Compos. Sci. Technol. 149, 127 (2017).

    Article  CAS  Google Scholar 

  10. W.Z. Ma, J. Zhang, and X.L. Wang, Appl. Surf. Sci. 254, 2947 (2008).

    Article  CAS  Google Scholar 

  11. A.Y. Wu, M. Kotaki, and Y. Liu, Polymer 48, 512 (2007).

    Article  Google Scholar 

  12. J.A. Lewi, Adv. Funct. Mater. 16, 2193 (2006).

    Article  Google Scholar 

  13. Z.H. Liu, C.T. Pan, C.Y. Su, L.W. Lin, Y.J. Chen, and J.S. Tsaia, Sens. Actuator A-Phys. 193, 13 (2013).

    Article  CAS  Google Scholar 

  14. C. Chang, V.H. Tran, J.B. Wang, Y.K. Fuh, and L.W. Lin, Nano Lett. 10, 726 (2010).

    Article  CAS  Google Scholar 

  15. C.B. Lee, and A. Joshua, TarbuttonInt. J. Adv. Manuf. Tech. 104, 3155 (2019).

    Article  Google Scholar 

  16. P. Thakur, A. Kool, B. Bagchi, N.A. Hoque, S. Das, and P. Nandy, Phys. Chem. Chem. Phys. 17, 13082 (2015).

    Article  CAS  Google Scholar 

  17. I.S. Elashmawi, Cryst. Res. Technol. 42, 389 (2007).

    Article  CAS  Google Scholar 

  18. S. Jana, S. Garain, S. Sen, and D. Mandal, Phys. Chem. Chem. Phys. 17, 17429 (2015).

    Article  CAS  Google Scholar 

  19. S. Yoon, A.A. Prabu, K.J. Kim, C. Park, and C. Macromol, Rapid Commun. 29, 13 (2008).

    Article  Google Scholar 

  20. Y.J. Wang, F.F. Wang, and L.J. Xu, Adv. Mater. Res. 804, 74 (2013).

    Article  Google Scholar 

  21. N. Agarwal, D.A. Hoagland, and R.J. Farris, J. Appl. Polym. Sci. 63, 401 (1997).

    Article  CAS  Google Scholar 

  22. Y. Zhang, L. Ye, B.P. Zhang, Y.S. Chen, W.G. Zhao, G. Yang, J. Wang, and H.W. Zhang, J. Membr. Sci. 579, 22 (2019).

    Article  CAS  Google Scholar 

  23. R. Gregorio, and E.M. Ueno, J. Mater. Sci. 34, 4489 (1999).

    Article  CAS  Google Scholar 

  24. R. Gregorio, and M. Cestari, J. Polym. Sci. Pt. B Polym. Phys. 32, 859 (1994).

    Article  CAS  Google Scholar 

  25. C.F. Chen, F.X. Cai, Y. Zhu, L.C. Liao, J.L. Qian, and F.G. Yuan, Smart Mater. Struct. 28, 065017 (2019).

    Article  CAS  Google Scholar 

  26. C.H. Zhang, Q.G. Chi, J.F. Dong, Y. Cui, X. Wang, L.Z. Liu, and Q.Q. Lei, Sci. Rep. 6, 33508 (2016).

    Article  CAS  Google Scholar 

  27. L. Liao, C. Chen, J. Qian, Y. Zhang, R. Zhang, and J. Zhu, Mater. Res. Express 7, 016437 (2020).

    Article  CAS  Google Scholar 

  28. A.D. Wang, C.F. Chen, L.C. Liao, J.L. Qian, F.G. Yuan, and N.Y. Zhang, J. Inorg. Organomet. Polym. 30, 1497 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51102118) and the Opening Fund of National Center for International Research on Structural Health Management of Critical Components (KFJJ20-04N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caifeng Chen.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Chen, C., Qian, J. et al. Enhanced Electrical Properties of PVDF Thin Film by Addition of NaCl by Near-Electric-Field 3D Printing. Journal of Elec Materi 50, 4781–4786 (2021). https://doi.org/10.1007/s11664-021-09014-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09014-3

Keywords

Navigation