Skip to main content
Log in

Substrate Temperature Impact on the Structural, Optical and Photo-Catalytic Activity of Sputtered Cu-Doped ZnO Thin Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Herein, I describe a study on the impact of substrate temperature on the structural, optical and photo-catalytic activity of sputtered Cu-doped ZnO thin films. Cu-doped ZnO nanocrystalline thin films of 10 wt.% Cu were first prepared at different substrate temperatures by radio frequency magnetron sputtering. Energy-dispersive X-ray spectroscopy was used to verify the percentage of Cu-doping. Both the structural and optical changes for the deposited thin films were measured by different characterization techniques. The nature of the deposited films was measured by X-ray diffraction analysis (XRD) that showed four characteristic peaks (002), (103), (100), and (111) related to ZnO. The intensity of the XRD peaks was affected by Cu-doping and increasing the substrate temperatures. The surface morphology and roughness for the prepared thin films were measured by atomic force microscopy. The calculated optical band gap of the prepared thin films deceased from 3.16 eV for the pure ZnO to 2.74 eV, 2.71 eV, 2.69 eV and 2.66 eV for the 10 wt.% Cu-doped ZnO thin film deposited at room temperature, 100°C, 200°C, and 300°C, respectively. The photoluminescence (PL) spectra for the prepared thin films were recorded to examine the impact of Cu-doping and the effect of increasing the substrate temperatures. As a photo-catalyst, the deposited thin films demonstrated high efficiency and stability concerning the degradation of methylene blue organic dye under a 500 W visible lamp and reusability for photo-catalytic experiments without much loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Li, Y. Jia, N. Bu, J. Wu, and Q. Zhen, J. Alloys Compd. 643, 88 (2015).

    Article  CAS  Google Scholar 

  2. D. Tekin, H. Kiziltas, and H. Ungan, J. Mol. Liq. 306, 112905 (2020).

    Article  CAS  Google Scholar 

  3. B. Wang, G.-Y. Cui, B.-B. Zhang, Z. Li, H.-X. Ma, W. Wang, F.-Y. Zhang, and X.-X. Ma, Opt. Mater. 109, 110202 (2020).

    Article  CAS  Google Scholar 

  4. W.M. El Rouby, A.A. Al-Ghamdi, M.S. Abdel-Wahab, and A. Jilani, Bull. Mater. Sci. 41, 1 (2018).

    Article  CAS  Google Scholar 

  5. W.E. Mahmoud, and A. Al-Ghamdi, Polym. Compos. 32, 1143 (2011).

    Article  CAS  Google Scholar 

  6. D. Alsebaie, W. Shirbeeny, A. Alshahrie, and M.S. Abdel-Wahab, Optik 148, 172 (2017).

    Article  CAS  Google Scholar 

  7. E.N. Danial, M. Hjiri, M.S. Abdel-wahab, N. Alonizan, L. El Mir, and M. Aida, Inorg. Chem. Commun. 122, 108281 (2020).

    Article  CAS  Google Scholar 

  8. W.E. Mahmoud, A. Al-Ghamdi, S. Al-Heniti, and S. Al-Ameer, J. Alloys Compd. 491, 742 (2010).

    Article  CAS  Google Scholar 

  9. A.H. Hammad, M.S. Abdel-wahab, S. Vattamkandathil, and A.R. Ansari, Phys. B 540, 1 (2018).

    Article  CAS  Google Scholar 

  10. M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, and G. Kiriakidis, Thin Solid Films 515, 551 (2006).

    Article  CAS  Google Scholar 

  11. Y. Hunge, A. Yadav, S. Kulkarni, and V. Mathe, Sens. Actuators B 274, 1 (2018).

    Article  CAS  Google Scholar 

  12. R. Bhardwaj, B. Kaur, J.P. Singh, M. Kumar, H. Lee, P. Kumar, R. Meena, K. Asokan, K.H. Chae, and N. Goyal, Appl. Surf. Sci. 479, 1021 (2019).

    Article  CAS  Google Scholar 

  13. S. Ghosh, C. Choubey, and A. Sil, Superlattices Microstruct. 125, 271 (2019).

    Article  CAS  Google Scholar 

  14. K.D.A. Kumar, S. Valanarasu, S.R. Rosario, V. Ganesh, M. Shkir, C. Sreelatha, and S. AlFaify, Solid-State Sci. 78, 58 (2018).

    Article  CAS  Google Scholar 

  15. V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam, and S. AlFaify, Superlattices Microstruct. 123, 311 (2018).

    Article  CAS  Google Scholar 

  16. A. Shehata, W.Z. Tawfik, and T. Mohamed, JOSA B 37, A1 (2020).

    Article  CAS  Google Scholar 

  17. B.K. Das, T. Das, K. Parashar, S. Parashar, R. Kumar, A. Anupama, and B. Sahoo, Electron. Mater. Lett. 16, 255 (2020).

    Article  CAS  Google Scholar 

  18. P.-H. Lei, C.-D. Yang, P.-C. Huang, and S.-J. Yeh, Micromachines 10, 239 (2019).

    Article  Google Scholar 

  19. J. Kim, D. Byun, S. Ie, D. Park, W. Choi, J.-W. Choi, and B. Angadi, Semicond. Sci. Technol. 23, 095004 (2008).

    Article  CAS  Google Scholar 

  20. M. Abinaya, K. Dhanisha, M. Manoj Cristopher, P. Deepak Raj, K. Jeyadheepan, and M. Sridharan, Int. J. Nanosci. 17, 1760047 (2018).

    Article  CAS  Google Scholar 

  21. P. Ngoc Thao, S. Yoshida, and S. Tanaka, Micromachines 9, 455 (2018).

    Article  Google Scholar 

  22. A. Jilani, M.S. Abdel-Wahab, H. Zahran, I. Yahia, A.A. Al-Ghamdi, A. Alshahrie, and A. El-Naggar, Optik 164, 143 (2018).

    Article  CAS  Google Scholar 

  23. M.S. Abdel-Wahab, A. Jilani, I. Yahia, and A.A. Al-Ghamdi, Superlattices Microstruct. 94, 108 (2016).

    Article  CAS  Google Scholar 

  24. W.Z. Tawfik, M.A. Hassan, M.A. Johar, S.-W. Ryu, and J.K. Lee, J. Catal. 374, 276 (2019).

    Article  CAS  Google Scholar 

  25. L.N. Mahour, H.K. Choudhary, R. Kumar, A. Anupama, and B. Sahoo, Ceram. Int. 45, 24625 (2019).

    Article  CAS  Google Scholar 

  26. T. Das, B. Das, K. Parashar, R. Kumar, H.K. Choudhary, A. Anupama, B. Sahoo, P. Sahoo, and S. Parashar, J. Mater. Sci. Mater. Electron. 28, 13587 (2017).

    Article  CAS  Google Scholar 

  27. P. Dhamodharan, C. Manoharan, M. Bououdina, R. Venkadachalapathy, and S. Ramalingam, Sol. Energy 141, 127 (2017).

    Article  CAS  Google Scholar 

  28. M. Gaikwad, M. Suryawanshi, P. Maldar, T. Dongale, and A. Moholkar, Opt. Mater. 78, 325 (2018).

    Article  CAS  Google Scholar 

  29. M. Lanjewar, and J.V. Gohel, Inorg. Nano-Met. Chem. 47, 1090 (2017).

    Article  CAS  Google Scholar 

  30. V.L. Patil, S.A. Vanalakar, P.S. Patil, and J.H. Kim, Sens. Actuators B 239, 1185 (2017).

    Article  CAS  Google Scholar 

  31. V. Mata, A. Maldonado, and M. de la Luz Olvera, Mater. Sci. Semicond. Process. 75, 288 (2018).

    Article  CAS  Google Scholar 

  32. M.M. Ahmed, W.Z. Tawfik, M. Elfayoumi, M. Abdel-Hafiez, and S. El-Dek, J. Alloys Compd. 791, 586 (2019).

    Article  CAS  Google Scholar 

  33. S. Benzitouni, M. Zaabat, A. Mahdjoub, A. Benaboud, and B. Boudine, Mater Sci-Poland 36, 427 (2018).

    Article  CAS  Google Scholar 

  34. H. Wu, Z. Hu, B. Li, H. Wang, D. Zhou, and X. Zhang, Mater. Lett. 232, 206 (2018).

    Article  CAS  Google Scholar 

  35. P. Boryło, K. Matus, K. Lukaszkowicz, J. Kubacki, K. Balin, M. Basiaga, M. Szindler, and J. Mikuła, Appl. Surf. Sci. 474, 177 (2019).

    Article  CAS  Google Scholar 

  36. B.K. Das, T. Das, K. Parashar, S. Parashar, R. Kumar, H.K. Choudhary, V.B. Khopkar, A. Anupama, and B. Sahoo, Mater. Chem. Phys. 221, 419 (2019).

    Article  CAS  Google Scholar 

  37. V. Kumar, O. Ntwaeaborwa, and H. Swart, Phys. B 576, 411713 (2020).

    Article  CAS  Google Scholar 

  38. M.S. Abdel-wahab, A. Jilani, A. Alshahrie, and A.H. Hammad, J. Mater. Sci. Mater. Electron. 29, 3056 (2018).

    Article  CAS  Google Scholar 

  39. X. Zhao, Y. Li, C. Ai, and D. Wen, Materials 12, 1282 (2019).

    Article  CAS  Google Scholar 

  40. P.K. Bhujbal, and H.M. Pathan, Eng. Sci. 10, 58 (2020).

    CAS  Google Scholar 

  41. J. Nag, and R. Haglund Jr., J. Phys. Condens. Matter 20, 264016 (2008).

    Article  CAS  Google Scholar 

  42. C. Han, L. Duan, X. Zhao, Z. Hu, Y. Niu, and W. Geng, J. Alloys Compd. 770, 854 (2019).

    Article  CAS  Google Scholar 

  43. Y. Andolsi, and F. Chaabouni, J. Alloys Compd. 818, 152739 (2020).

    Article  CAS  Google Scholar 

  44. X. Suo, S. Zhao, Y. Ran, H. Liu, Z. Jiang, Y. Li, and Z. Wang, Surf. Coat. Technol. 357, 978 (2019).

    Article  CAS  Google Scholar 

  45. K. Ghosh, and R. Pandey, Appl. Phys. A 125, 98 (2019).

    Article  CAS  Google Scholar 

  46. Z. Yan, J. Bao, X.-Y. Yue, X.-L. Li, Y.-N. Zhou, and X.-J. Wu, J. Alloys Compd. 812, 152093 (2020).

    Article  CAS  Google Scholar 

  47. Z.N. Kayani, M. Sahar, S. Riaz, S. Naseem, and Z. Saddiqe, Opt. Mater. 108, 110457 (2020).

    Article  CAS  Google Scholar 

  48. A.A. Al-Ghamdi, M.S. Abdel-Wahab, A. Farghali, and P. Hasan, Mater. Res. Bull. 75, 71 (2016).

    Article  CAS  Google Scholar 

  49. Z. Ghorannevis, M. Hosseinnejad, M. Habibi, and P. Golmahdi, J. Theor. Appl. Phys. 9, 33 (2015).

    Article  Google Scholar 

  50. J. Iqbal, A. Jilani, P.Z. Hassan, S. Rafique, R. Jafer, and A.A. Alghamdi, J King Saud Univ Sci. 28, 347 (2016).

    Article  Google Scholar 

  51. A. Jilani, M.S. Abdel-Wahab, A.A. Al-Ghamdi, A. Sadik Dahlan, and I. Yahia, Phys. B 481, 97 (2016).

    Article  CAS  Google Scholar 

  52. W.Z. Tawfik, M. Esmat, and S. El-Dek, Appl. Nanosci 7, 863 (2017).

    Article  CAS  Google Scholar 

  53. R. Kumar, A. Kumar, N. Verma, V. Khopkar, R. Philip, and B. Sahoo, ACS Appl. Nano Mater. 3, 8618 (2020).

    Article  CAS  Google Scholar 

  54. A. Kumar, R. Kumar, N. Verma, A. Anupama, H.K. Choudhary, R. Philip, and B. Sahoo, Opt. Mater. 108, 110163 (2020).

    Article  CAS  Google Scholar 

  55. A.H. Hammad, M.S. Abdel-wahab, S. Vattamkandathil, and A.R. Ansari, Coatings 9, 615 (2019).

    Article  CAS  Google Scholar 

  56. A.A. Al-Ghamdi, M. Khedr, M.S. Ansari, P. Hasan, M.S. Abdel-Wahab, and A. Farghali, Phys. E. 81, 83 (2016).

    Article  CAS  Google Scholar 

  57. P. Shewale, and Y. Yu, Ceram. Int. 43, 4175 (2017).

    Article  CAS  Google Scholar 

  58. H. Naz, R.N. Ali, Q. Liu, S. Yang, and B. Xiang, J. Colloid Interface Sci. 512, 548 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sh. Abdel-wahab.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-wahab, M.S. Substrate Temperature Impact on the Structural, Optical and Photo-Catalytic Activity of Sputtered Cu-Doped ZnO Thin Films. Journal of Elec Materi 50, 4364–4372 (2021). https://doi.org/10.1007/s11664-021-08963-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08963-z

Keywords

Navigation