Skip to main content
Log in

Polyaniline/Graphitic Carbon Nitride Nanocomposites with Improved Thermoelectric Properties

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we aimed to investigate the effects of graphitic carbon nitride (g-C3N4) on the thermoelectric (TE) properties of camphorsulfonic acid (CSA) doped polyaniline (PANI). For this purpose, g-C3N4 was synthesized at 550°C using guanidine hydrochloride as a precursor. Later, PANI was synthesized by oxidative chemical polymerization and doped with CSA. Finally, PANI-CSA/g-C3N4 composites were prepared by ultrasonic homogenization with different weight ratios of g-C3N4. The composites showed positive Seebeck coefficients which are the characteristics of p-type semiconductors. The Seebeck coefficient of PANI-CSA enhanced from 10 μV K−1 to 472 μV K−1 with the incorporation of g-C3N4. Furthermore, the power factor (PF) of the composites reached a maximum at 70.75 μW m−1 K−2 which is almost 500 times higher compared to pristine PANI-CSA. This indicates that g-C3N4 is a promising additive to be used in polymer-based TE materials that can be used around room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. N. Nandihalli, C.-J. Liu, and T. Mori, Nano Energy 78, 105186 (2020).

    CAS  Google Scholar 

  2. V. Ugraskan, and F. Karaman, J. Electr. Mater. 49, 7560 (2020).

    Google Scholar 

  3. K. Yusupov, D. Hedman, A.P. Tsapenko, A. Ishteev, S. You, V. Khovaylo, A. Larsson, A.G. Nasibulin, and A. Vomiero, J. Alloys Compd. 845, 156354 (2020).

    CAS  Google Scholar 

  4. Y.-Y. Hsieh, Y. Zhang, L. Zhang, Y. Fang, S.N. Kanakaraaj, J.-H. Bahk, and V. Shanov, Nanoscale 11, 6552 (2019).

    CAS  Google Scholar 

  5. S. Wang, F. Liu, C. Gao, T. Wan, L. Wang, L. Wang, and L. Wang, Chem. Eng. J. 370, 322 (2019).

    CAS  Google Scholar 

  6. S. Wang, Y. Zhou, Y. Liu, L. Wang, and C. Gao, J. Mater. Chem. C 8, 528 (2020).

    Google Scholar 

  7. A. Debnath, K. Deb, K. Sarkar, and B. Saha, J. Electr. Mater. 49, 5028 (2020).

    CAS  Google Scholar 

  8. F. Yakuphanoglu, B.F. Şenkal, and A. Sarac, J. Electr. Mater. 37, 930 (2008).

    CAS  Google Scholar 

  9. W. Yang, H. Xu, Y. Li, and W. Wang, J. Electr. Mater. 46, 4815 (2017).

    CAS  Google Scholar 

  10. J. De Albuquerque, L.H.C. Mattoso, R.M. Faria, J.G. Masters, and A.G. MacDiarmid, Synth. Met. 146, 1 (2004).

    Google Scholar 

  11. A. Zoshki, M.B. Rahmani, F. Masdarolomoor, and S.H. Pilehrood, J. Nanoelectron. Optoelectron. 12, 465 (2017).

    CAS  Google Scholar 

  12. M. Bharti, A. Singh, S. Samanta, and D.K. Aswal, Prog. Mater. Sci. 93, 270 (2018).

    CAS  Google Scholar 

  13. C. Nath, A. Kumar, Y.-K. Kuo, and G.S. Okram, Appl. Phys. Lett. 105, 133108 (2014).

    Google Scholar 

  14. T. Ube, J. Koyanagi, T. Kosaki, K. Fujimoto, T. Yokozeki, T. Ishiguro, and K. Nishio, J. Mater. Sci. 54, 3904 (2019).

    CAS  Google Scholar 

  15. T.N.A.B.T.A. Mutalib, S.J. Tan, K.L. Foo, Y.M. Liew, C.Y. Heah, and M.M.A.B. Abdullah, Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03334-w.

    Article  Google Scholar 

  16. V. Shalini, M. Navaneethan, S. Harish, J. Archana, S. Ponnusamy, H. Ikeda, and Y. Hayakawa, Appl. Surf. Sci. 493, 1350 (2019).

    CAS  Google Scholar 

  17. L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang, and L. Chen, J. Mater. Chem. A 2, 11107 (2014).

    CAS  Google Scholar 

  18. R. Wu, H. Yuan, C. Liu, J.-L. Lan, X. Yang, and Y.-H. Lin, RSC Adv. 8, 26011 (2018).

    CAS  Google Scholar 

  19. C. Meng, C. Liu, and S. Fan, Adv. Mater. 22, 535 (2010).

    CAS  Google Scholar 

  20. L. Wang, D. Wang, G. Zhu, J. Li, and F. Pan, Mater. Lett. 65, 1086 (2011).

    CAS  Google Scholar 

  21. M. Culebras, C.M. Gómez, and A. Cantarero, Materials 7, 6701 (2014).

    Google Scholar 

  22. N. Rono, J.K. Kibet, B.S. Martincigh, and V.O. Nyamori, Crit. Rev. Solid State Mater. Sci. (2020). https://doi.org/10.1080/10408436.2019.1709414

    Article  Google Scholar 

  23. Z. Zhao, Y. Sun, and F.J.N. Dong, Nanoscale 7, 15 (2015).

    CAS  Google Scholar 

  24. H.-B. Fang, Y. Luo, Y.-Z. Zheng, W. Ma, and X. Tao, Ind. Eng. Chem. Res. 55, 4506 (2016).

    CAS  Google Scholar 

  25. A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, and T.M. Aminabhavi, Carbon 149, 693 (2019).

    CAS  Google Scholar 

  26. Y. Ma, Y. Yang, C. Lu, K. Lu, S. Wu, X. Liu, and X. Wen, J. Appl. Polym. Sci. 135, 46242 (2018).

    Google Scholar 

  27. B. Mortazavi, G. Cuniberti, and T. Rabczuk, Comput. Mater. Sci. 99, 285 (2015).

    CAS  Google Scholar 

  28. P. Shyni, P.P. Pradyumnan, P. Rajasekar, A.M. Narayanan, and A.M. Umarji, J. Alloys Compd. 853, 156872 (2021).

    CAS  Google Scholar 

  29. Z. Ding, M. An, S. Mo, X. Yu, Z. Jin, Y. Liao, K. Esfarjani, J.-T. Lü, J. Shiomi, and N. Yang, J. Mater. Chem. A 7, 2114 (2019).

    CAS  Google Scholar 

  30. L. Shi, L. Liang, F. Wang, J. Ma, and J. Sun, Catal. Sci. Technol. 4, 3235 (2014).

    CAS  Google Scholar 

  31. J. Liu, T. Zhang, Z. Wang, G. Dawson, and W. Chen, J. Mater. Chem. 21, 14398 (2011).

    CAS  Google Scholar 

  32. B.S. Singu, P. Srinivasan, and S. Pabba, J. Electrochem. Soc. 159, A6 (2011).

    Google Scholar 

  33. Y. Duan, J. Liu, Y. Zhang, and T. Wang, RSC Adv. 6, 73915 (2016).

    CAS  Google Scholar 

  34. Y. Zhang, J. Liu, Y. Zhang, J. Liu, and Y. Duan, RSC Adv. 7, 54031 (2017).

    CAS  Google Scholar 

  35. H.S. Hassan, M.F. Elkady, M.A. Abd El kawi, and M. Alian, Am. J. Appl. Chem. 3, 54 (2015).

    CAS  Google Scholar 

  36. K. Ramesh, M. Prashantha, N.K. Reddy, and E.S.R. Gopal, Integr. Ferroelectr. 117, 40 (2010).

    CAS  Google Scholar 

  37. M. Kim, S. Hwang, and J.-S. Yu, J. Mater. Chem. 17, 1656 (2007).

    CAS  Google Scholar 

  38. S. Saravanan, C.J. Mathai, M.R. Anantharaman, S. Venkatachalam, and P.V. Prabhakaran, J. Phys. Chem. Solids 67, 1496 (2006).

    CAS  Google Scholar 

  39. R.R. Mohan, S.J. Varma, M. Faisal, and S. Jayalekshmi, RSC Adv. 5, 5917 (2015).

    CAS  Google Scholar 

  40. J.E. Osorio-Fuente, C. Gómez-Yáñez, M. de Ángeles-Hernández-Pérez, and F. Pérez-Moreno, J. Mex. Chem. Soc. 58, 52 (2014).

    Google Scholar 

  41. Q. Yao, Q. Wang, L. Wang, Y. Wang, J. Sun, H. Zeng, Z. Jin, X. Huang, and L. Chen, J. Mater. Chem. A 2, 2634 (2014).

    CAS  Google Scholar 

  42. K.J. Erickson, F. Léonard, V. Stavila, M.E. Foster, C.D. Spataru, R.E. Jones, B.M. Foley, P.E. Hopkins, M.D. Allendorf, and A.A. Talin, Adv. Mater. 27, 3453 (2015).

    CAS  Google Scholar 

  43. O. Abdulrazzaq, S.E. Bourdo, V. Saini, F. Watanabe, B. Barnes, A. Ghosh, and A.S. Biris, RSC Adv. 5, 33 (2015).

    CAS  Google Scholar 

  44. H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang, K. Sun, and J. Ouyang, Macromol. Rapid Commun. 39, 1700727 (2018).

    Google Scholar 

  45. Y. Harima, S. Fukumoto, L. Zhang, X. Jiang, J. Yano, K. Inumaru, and I. Imae, RSC Adv. 5, 86855 (2015).

    CAS  Google Scholar 

  46. M. Mitra, C. Kulsi, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, and S. Goswami, RSC Adv. 5, 31039 (2015).

    CAS  Google Scholar 

  47. L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang, and L. Chen, J. Mater. Chem. A 3, 7086 (2015).

    CAS  Google Scholar 

  48. Y. Wang, J. Yang, L. Wang, K. Du, Q. Yin, and Q. Yin, ACS Appl. Mater. Interfaces 9, 20124 (2017).

    CAS  Google Scholar 

  49. Y. Du, S.Z. Shen, W. Yang, R. Donelson, K. Cai, and P.S. Casey, Synth. Met. 161, 2688 (2012).

    Google Scholar 

Download references

Acknowledgments

Financial support for this study has been provided by the Scientific and Technological Research Council of Turkey (TUBITAK) for supporting our study (Project No. 119M213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkan Ugraskan.

Ethics declarations

Conflict of interest

We declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugraskan, V., Karaman, F. Polyaniline/Graphitic Carbon Nitride Nanocomposites with Improved Thermoelectric Properties. J. Electron. Mater. 50, 3455–3461 (2021). https://doi.org/10.1007/s11664-021-08856-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08856-1

Keywords

Navigation