Skip to main content
Log in

Unveiling the Phase Evolution of Sol–Gel Sulfurized Cu2ZnSnS4 Thin Films in ppm-Level H2S: From Binary Sulfides to Quaternary Cu-Zn-Sn-S System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Understanding the reaction process governing the formation of sol–gel sulfurized copper zinc tin sulfide (Cu2ZnSnS4, CZTS) films and the growth of other secondary sulfide phases is crucial to process optimization and solar cell device performance. In the current study, sulfurization of the relevant single Cu oxide, single Sn oxide, and Cu-Sn oxide films related to the Cu-Zn-Sn-S system was carried out in 100 ppm H2S + 4%H2 + 96%N2 (by volume) at low to intermediate temperatures. At intermediate temperature of 350°C, sulfurization of Cu oxide, Sn oxide, and Cu-Sn oxide precursors showed no evidence for the formation of any binary or ternary sulfide phase(s) as observed during the in situ Raman monitoring experiments. These observations were also confirmed by subsequent x-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) analyses, while the stoichiometric Cu-Zn-Sn oxide film underwent a direct reaction between the oxides and H2S to form CZTS without binary or ternary impurities. In comparison, at lower temperature of 170°C, sulfurization of the single Cu oxide, Sn oxide precursors in 100 ppm H2S + 4%H2 + 96%N2 led to the formation of simple sulfides such as Cu2−xS (with x close to 1) and SnS2. As a result, despite sulfurization of sol–gel-based stoichiometric Cu-Zn-Sn oxide film at 170°C in the same gas mixture leading to CZTS formation, extended exposure to 100 ppm H2S leads to over-sulfurization and formation of detrimental impurities, especially CuS. The implications of the results with respect to the understanding and optimization of the phase formation process for CZTS light absorber material are discussed, and the direction for future research is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.M. Peter, Philos. Trans. A. Math. Phys. Eng. Sci. 369, 1840 (2011).

    CAS  Google Scholar 

  2. K. Ito and T. Nakazawa, Jpn. J. Appl. Phys. 27, 2094 (1988).

    Article  CAS  Google Scholar 

  3. A. Kanai, K. Toyonaga, K. Chino, H. Katagiri, and H. Araki, Jpn. J. Appl. Phys. 54, 08KC06 (2015).

    Article  Google Scholar 

  4. O. Awadallah and Z. Cheng, Thin Solid Films 625, 122 (2017).

    Article  CAS  Google Scholar 

  5. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, and Q. Qiao, Energy Environ. Sci. 8, 3134 (2015).

    Article  CAS  Google Scholar 

  6. G. Altamura and J. Vidal, Chem. Mater. 28, 3540 (2016).

    Article  CAS  Google Scholar 

  7. M. Dimitrievska, A. Fairbrother, X. Fontané, T. Jawhari, V. Izquierdo-Roca, E. Saucedo, and A. Pérez-Rodríguez, Appl. Phys. Lett. 104, 21901 (2014).

    Article  Google Scholar 

  8. R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombara, P.J. Dale, and S. Siebentritt, Appl. Phys. Lett. 102, 222108 (2013).

    Article  Google Scholar 

  9. A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, and S. Siebentritt, Appl. Phys. Lett. 98, 101907 (2011).

    Article  Google Scholar 

  10. S. Schorr and G. Gonzalez-Aviles, Phys. Status Solidi 206, 1054 (2009).

    Article  CAS  Google Scholar 

  11. M. Brandl, R. Ahmad, M. Distaso, H. Azimi, Y. Hou, W. Peukert, C.J. Brabec, and R. Hock, Thin Solid Films 582, 269 (2015).

    Article  CAS  Google Scholar 

  12. S. van Duren, Y. Ren, J. Scragg, J. Just, and T. Unold, in 2015 IEEE 42nd Photovoltaic Specialist Conference, p. 1 (2015).

  13. S. Van Duren, Y. Ren, J. Scragg, J. Just, and T. Unold, IEEE J. Photovolt. 7, 906 (2017).

    Article  Google Scholar 

  14. Z. Wang, S. Elouatik, and G.P. Demopoulos, Phys. Chem. Chem. Phys. 18, 29435 (2016).

    Article  CAS  Google Scholar 

  15. O. Awadallah and Z. Cheng, Sol. Energy Mater. Sol. Cells 176, 222 (2018).

    Article  CAS  Google Scholar 

  16. X. Yin, C. Tang, L. Sun, Z. Shen, and H. Gong, Chem. Mater. 26, 2005 (2014).

    Article  CAS  Google Scholar 

  17. A. Redinger, D.M. Berg, P.J. Dale, and S. Siebentritt, J. Am. Chem. Soc. 133, 3320 (2011).

    Article  CAS  Google Scholar 

  18. G. Chen, W. Wang, J. Zhang, S. Chen, and Z. Huang, Mater. Lett. 186, 98 (2017).

    Article  CAS  Google Scholar 

  19. D.J. Chakrabarti and D.E. Laughlin, Bull. Alloy Phase Diagr. 4, 254 (1983).

    Article  Google Scholar 

  20. S. Kawai, Jpn. J. Appl. Phys. 12, 1130 (1973).

    Article  Google Scholar 

  21. S. Siebentritt, Thin Solid Films 535, 1 (2013).

    Article  CAS  Google Scholar 

  22. I. Rosso, C. Galletti, M. Bizzi, G. Saracco, and V. Specchia, Ind. Eng. Chem. Res. 42, 1688 (2003).

    Article  CAS  Google Scholar 

  23. P.A. Fernandes, P.M.P. Salomé, and A.F. da Cunha, J. Alloys Compd. 509, 7600 (2011).

    Article  CAS  Google Scholar 

  24. E. A. Lund, H. Du, W. M. Hlaing Oo, G. Teeter, and M. A. Scarpulla, J. Appl. Phys. (2014).

  25. M. Bär, B. A. Schubert, B. Marsen, S. Krause, S. Pookpanratana, T. Unold, L. Weinhardt, C. Heske, and H. W. Schock, Appl. Phys. Lett. 99, (2011).

  26. D. Vaccarello, A. Tapley, and Z. Ding, RSC Adv. 3, 3512 (2013).

    Article  CAS  Google Scholar 

  27. K. Tanaka, N. Moritake, and H. Uchiki, Sol. Energy Mater. Sol. Cells 91, 1199 (2007).

    Article  CAS  Google Scholar 

  28. K. Maeda, K. Tanaka, Y. Nakano, Y. Fukui, and H. Uchiki, Jpn. J. Appl. Phys. 50, 05FB09 (2011).

    Article  Google Scholar 

  29. V. Tunuguntla, W.-C. Chen, P.-H. Shih, I. Shown, Y.-R. Lin, J.-S. Hwang, C.-H. Lee, L.-C. Chen, and K.-H. Chen, J. Mater. Chem. A 3, 15324 (2015).

    Article  CAS  Google Scholar 

  30. Z. Su, K. Sun, Z. Han, H. Cui, F. Liu, Y. Lai, J. Li, X. Hao, Y. Liu, and M.A. Green, J. Mater. Chem. A 2, 500 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This study was conceived by ZC. AD and OA designed and fabricated the in situ Raman heating cell, and OA carried out experiments. The manuscript was written by OA and ZC, and all authors approved the final version. The authors declare no competing financial interests.

Corresponding author

Correspondence to Zhe Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awadallah, O., Durygin, A. & Cheng, Z. Unveiling the Phase Evolution of Sol–Gel Sulfurized Cu2ZnSnS4 Thin Films in ppm-Level H2S: From Binary Sulfides to Quaternary Cu-Zn-Sn-S System. J. Electron. Mater. 50, 314–324 (2021). https://doi.org/10.1007/s11664-020-08539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08539-3

Keywords

Navigation