Skip to main content
Log in

Readiness of Magnetic Nanobiosensors for Point-of-Care Commercialization

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanobiosensors contribute to point-of-care (POC) efforts to make routine biodiagnostics more accessible to patients with respect to both expense and convenience. However, devices whose operation is based on magnetic phenomena appear delayed in their progress toward POC commercialization despite their promise of better sensitivity, as compared to devices based on optical, mechanical, or electrochemical phenomena. This review aims to elucidate the technical challenges preventing magnetic nanobiosensors from reaching market readiness. The following types of magnetic nanobiosensor operation are reviewed: giant magnetic impedance (GMI), superconducting quantum interference device (SQUID), anisotropic magnetoresistance, giant magnetoresistance (GMR), resonant coil, Hall effect, and microcantilever. In particular, a careful comparison of each type in terms of their advantages, disadvantages, recently overcome challenges, and sensitivities will be presented. For example, a disadvantage of GMI sensors, and certain others reviewed here, is the fact that ferromagnetic materials used in their construction directly impact the biosensing event since magnetic nanoparticle (MNP) labels are involved in the strategy. Other challenges associated with use of MNP labels will be addressed. Furthermore, some of the more interesting state-of-the-art magnetic nanobiosensor efforts will be discussed in order to provide an overview of target analytes and sample media under consideration. This review identifies GMR sensors as poised to dominate the market owing to their good sensitivity and ease of use. On the other hand, SQUID sensors, at their current stage of development, are revealed as unsuitable for POC applications due to their high operational cost and unwieldy instrumentation. Magnetics experts endeavoring to progress the field toward commercialization will find this review indispensable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Obama, JAMA 316, 525 (2016).

    Google Scholar 

  2. T. Lan, J. Zhang, and Y. Lu, Biotechnol. Adv. 34, 331 (2016).

    Google Scholar 

  3. R. Canovas, M. Cuartero, and G.A. Crespo, Biosens. Bioelectron. 130, 110 (2019).

    Google Scholar 

  4. S. Nayak, N.R. Blumenfeld, T. Laksanasopin, and S.K. Sia, Anal. Chem. 89, 102 (2017).

    Google Scholar 

  5. E. Petryayeva and W.R. Algar, RSC Adv. 5, 22256 (2015).

    Google Scholar 

  6. M. Zarei, Biosens. Bioelectron. 98, 494 (2017).

    Google Scholar 

  7. H.N. Lee, J.S. Ryu, C. Shin, and H.J. Chung, Macromol. Biosci. 17, 1700086 (2017).

    Google Scholar 

  8. A.C. Sun, C. Yao, A.G. Venkatesh, and D.A. Hall, Sens. Actuators B Chem. 235, 126 (2016).

    Google Scholar 

  9. T. Wang, R. Green, R.R. Nair, M. Howell, S. Mohapatra, R. Guldiken, and S.S. Mohapatra, Sensors (Basel) 15, 32045 (2015).

    Google Scholar 

  10. J. Devkota, M. Howell, P. Mukherjee, H. Srikanth, S. Mohapatra, and M.H. Phan, J. Appl. Phys. 117, 17D123 (2015).

    Google Scholar 

  11. J.E. Smith, K.E. Sapsford, W. Tan, and F.S. Ligler, Anal. Biochem. 410, 124 (2011).

    Google Scholar 

  12. K. Mahato, P.K. Maurya, and P. Chandra, 3 Biotech 8, 149 (2018).

    Google Scholar 

  13. L.X. Chen, X.Y. Wang, W.H. Lu, X.Q. Wu, and J.H. Li, Chem. Soc. Rev. 45, 2137 (2016).

    Google Scholar 

  14. D.J. Denmark, R.H. Hyde, C. Gladney, M.H. Phan, K.S. Bisht, H. Srikanth, P. Mukherjee, and S. Witanachchi, Drug Deliv. 24, 1317 (2017).

    Google Scholar 

  15. Z. Nemati, J. Alonso, L.M. Martinez, H. Khurshid, E. Garaio, J.A. Garcia, M.H. Phan, and H. Srikanth, J. Phys. Chem. C 120, 8370 (2016).

    Google Scholar 

  16. S. Sagadevan and M. Periasamy, Rev. Adv. Mater. Sci. 36, 62 (2014).

    Google Scholar 

  17. N.F. Huls, M.H. Phan, A. Kumar, S. Mohapatra, S. Mohapatra, P. Mukherjee, and H. Srikanth, Sensors (Basel) 13, 8490 (2013).

    Google Scholar 

  18. A. Kumar, S. Mohapatra, V. Fal-Miyar, A. Cerdeira, J.A. Garcia, H. Srikanth, J. Gass, and G.V. Kurlyandskaya, Appl. Phys. Lett. 91, 143902 (2007).

    Google Scholar 

  19. J.L. Arlett, E.B. Myers, and M.L. Roukes, Nat. Nanotechnol. 6, 203 (2011).

    Google Scholar 

  20. X. Chen, Y. Pan, H. Liu, X. Bai, N. Wang, and B. Zhang, Biosens. Bioelectron. 79, 353 (2016).

    Google Scholar 

  21. S. Stassi, E. Fantino, R. Calmo, A. Chiappone, M. Gillono, D. Scaiola, C.F. Pirri, C. Ricciardi, A. Chiado, and I. Roppolo, ACS Appl. Mater. Interfaces. 9, 19193 (2017).

    Google Scholar 

  22. D. Hamers, Vader L. van Voorst, J.W. Borst, and J. Goedhart, Protoplasma 251, 333 (2014).

    Google Scholar 

  23. S. Gogoi and R. Khan, Phys. Chem. Chem. Phys. 20, 16501 (2018).

    Google Scholar 

  24. Y. Takakusagi, K. Takakusagi, F. Sugawara, and K. Sakaguchi, Methods Mol. Biol. 1795, 159 (2018).

    Google Scholar 

  25. S. Aravamudhan, A. Kumar, S. Mohapatra, and S. Bhansali, Biosens. Bioelectron. 22, 2289 (2007).

    Google Scholar 

  26. S. Alwarappan, K. Cissell, S. Dixit, S. Mohapatra, and C.Z. Li, J. Electroanal Chem. (Lausanne) 686, 69 (2012).

    Google Scholar 

  27. S. Li, J. Liu, Y. Lu, L. Zhu, C. Li, L. Hu, J. Li, J. Jiang, S. Low, and Q. Liu, Biosens. Bioelectron. 117, 32 (2018).

    Google Scholar 

  28. S. Schrittwieser, B. Pelaz, W.J. Parak, S. Lentijo-Mozo, K. Soulantica, J. Dieckhoff, F. Ludwig, A. Guenther, A. Tschope, and J. Schotter, Sensors (Basel) 16, 828 (2016).

    Google Scholar 

  29. J. Devkota, C. Wang, A. Ruiz, S. Mohapatra, P. Mukherjee, H. Srikanth, and M.H. Phan, J. Appl. Phys. 113, 104701 (2013).

    Google Scholar 

  30. F. Ibraimi, B. Ekberg, D. Kriz, G. Danielsson, and L. Bulow, Anal. Bioanal. Chem. 405, 6001 (2013).

    Google Scholar 

  31. D. Erickson, S. Mandal, A.H. Yang, and B. Cordovez, Microfluid Nanofluidics 4, 33 (2008).

    Google Scholar 

  32. V. Nabaei, R. Chandrawati, and H. Heidari, Biosens. Bioelectron. 103, 69 (2018).

    Google Scholar 

  33. I. Giouroudi and G. Kokkinis, Nanomaterials (Basel) 7, 171 (2017).

    Google Scholar 

  34. R.S. Gaster, D.A. Hall, and S.X. Wang, Lab Chip 11, 950 (2011).

    Google Scholar 

  35. K. Enpuku, T. Minotani, T. Gima, Y. Kuroki, Y. Itoh, M. Yamashita, Y. Katakura, and S. Kuhara, Jpn. J. Appl. Phys. 2, L1102 (1999).

    Google Scholar 

  36. A. Guillaume, J.M. Scholtyssek, A. Lak, A. Kassner, F. Ludwig, and M. Schilling, J. Magn. Magn. Mater. 408, 46 (2016).

    Google Scholar 

  37. D. Issadore, H.J. Chung, J. Chung, G. Budin, R. Weissleder, and H. Lee, Adv. Healthc Mater. 2, 1224 (2013).

    Google Scholar 

  38. A. Sandhu, Y. Kumagai, A. Lapicki, S. Sakamoto, M. Abe, and H. Handa, Biosens. Bioelectron. 22, 2115 (2007).

    Google Scholar 

  39. J. Nabias, A. Asfour, and J.P. Yonnet, Sensors (Basel) 17, 640 (2017).

    Google Scholar 

  40. S.D. Jiang, T. Eggers, O. Thiabgoh, D.W. Xing, W.B. Fang, J.F. Sun, H. Srikanth, and M.H. Phan, J. Electron. Mater. 47, 2667 (2018).

    Google Scholar 

  41. N. Ravi, G. Rizzi, S.E. Chang, P. Cheung, P.J. Utz, and S.X. Wang, Biosens. Bioelectron. 130, 338 (2019).

    Google Scholar 

  42. L. Xu, H. Yu, M.S. Akhras, S.J. Han, S. Osterfeld, R.L. White, N. Pourmand, and S.X. Wang, Biosens. Bioelectron. 24, 99 (2008).

    Google Scholar 

  43. L. Xu, H. Yu, S.J. Han, S. Osterfeld, R.L. White, N. Pourmand, and S.X. Wang, IEEE Trans. Magn. 44, 3989 (2008).

    Google Scholar 

  44. H. Yu, S.J. Osterfeld, L. Xu, R.L. White, N. Pourmand, and S.X. Wang, Proc. Spie. 7035, 70350E (2008).

    Google Scholar 

  45. A. Ehresmann, I. Koch, and D. Holzinger, Sensors (Basel) 15, 28854 (2015).

    Google Scholar 

  46. G. Li, S. Sun, R.J. Wilson, R.L. White, N. Pourmand, and S.X. Wang, Sens. Actuators A Phys. 126, 98 (2006).

    Google Scholar 

  47. Y.L. Xianyu, Q.L. Wang, and Y.P. Chen, Trac-Trend Anal. Chem. 106, 213 (2018).

    Google Scholar 

  48. F. Ender, D. Weiser, A. Vitez, G. Sallai, M. Nemeth, and L. Poppe, Microsyst. Technol. 23, 3979 (2017).

    Google Scholar 

  49. A. Kumar, S. Aravamudhan, M. Gordic, S. Bhansali, and S.S. Mohapatra, Biosens. Bioelectron. 22, 2138 (2007).

    Google Scholar 

  50. M. Holzinger, A. Le Goff, and S. Cosnier, Front. Chem. 2, 63 (2014).

    Google Scholar 

  51. M. Holzinger, A. Le Goff, and S. Cosnier, Sensors (Basel) 17, 1010 (2017).

    Google Scholar 

  52. A.H. Lu, E.L. Salabas, and F. Schuth, Angew. Chem. Int. Ed. Engl. 46, 1222 (2007).

    Google Scholar 

  53. M.H. Phan, J. Alonso, H. Khurshid, P. Lampen-Kelley, S. Chandra, K. Stojak Repa, Z. Nemati, R. Das, O. Iglesias, and H. Srikanth, Nanomaterials (Basel) 6, 221 (2016).

    Google Scholar 

  54. Y.T. Chen, A.G. Kolhatkar, O. Zenasni, S. Xu, and T.R. Lee, Sensors (Basel) 17, 2300 (2017).

    Google Scholar 

  55. J. Robles, R. Das, M. Glassell, M.H. Phan, and H. Srikanth, AIP Adv. 8, 056719 (2018).

    Google Scholar 

  56. H. Roy, B.S. Nayak, and S.A. Rahaman, Characterization and Biology of Nanomaterials for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery (Amsterdam: Elsevier, 2019), pp. 447–456.

    Google Scholar 

  57. J. Sefcovicova and J. Tkac, Chem. Pap. 69, 42 (2015).

    Google Scholar 

  58. J. Clarke, Y.H. Lee, and J. Schneiderman, Supercond. Sci. Technol. 31, 080201 (2018).

    Google Scholar 

  59. Y. Zhang, J. Xu, D. Cao, Q. Li, G. Zhao, N.X. Sun, and S. Li, J. Magn. Magn. Mater. 453, 132 (2018).

    Google Scholar 

  60. D.J. Denmark, J. Bradley, D. Mukherjee, J. Alonso, S. Shakespeare, N. Bernal, M.H. Phan, H. Srikanth, S. Witanachchi, and P. Mukherjee, RSC Adv. 6, 5641 (2016).

    Google Scholar 

  61. K.K. Narayanasamy, M. Cruz-Acuna, C. Rinaldi, J. Everett, J. Dobson, and N.D. Telling, J. Colloid Interface Sci. 532, 536 (2018).

    Google Scholar 

  62. Z. Nemati, J. Alonso, H. Khurshid, M.H. Phan, and H. Srikanth, RSC Adv. 6, 38697 (2016).

    Google Scholar 

  63. E. Ng, K.C. Nadeau, and S.X. Wang, Biosens. Bioelectron. 80, 359 (2016).

    Google Scholar 

  64. C.L. Dennis and R. Ivkov, Int. J. Hyperthermia 29, 715 (2013).

    Google Scholar 

  65. S. Uchida, Y. Higuchi, Y. Ueoka, T. Yoshida, K. Enpuku, S. Adachi, K. Tanabe, A. Tsukamoto, A. Kandori, and I.E.E.E. Trans, Appl. Supercond. 24, 1 (2014).

    Google Scholar 

  66. L. Guo, Z. Yang, S.T. Zhi, Z. Feng, C. Lei, and Y. Zhou, PLoS One 13, e0194631 (2018).

    Google Scholar 

  67. G. Lin, D. Makarov, and O.G. Schmidt, Lab. Chip. 17, 1884 (2017).

    Google Scholar 

  68. A. Beguivin, H. Corte-Leon, A. Manzin, V. Nabaei, P. Krzysteczko, H.W. Schumacher, D. Petit, R.P. Cowburn, and O. Kazakova, J. Appl. Phys. 115, 17C718 (2014).

    Google Scholar 

  69. H. Corte-Leon, V. Nabaei, A. Manzin, J. Fletcher, P. Krzysteczko, H.W. Schumacher, and O. Kazakova, Sci. Rep. 4, 6045 (2014).

    Google Scholar 

  70. Z. Wang, X. Wang, M. Li, Y. Gao, Z. Hu, T. Nan, X. Liang, H. Chen, J. Yang, S. Cash, and N.X. Sun, Adv. Mater. 28, 9370 (2016).

    Google Scholar 

  71. Y. Guo, Y. Ouyang, N. Sato, C.C. Ooi, and S.X. Wang, IEEE Sens. J. 17, 3309 (2017).

    Google Scholar 

  72. Y. Guo, Y. Deng, and S.X. Wang, Sens. Actuata-Phys. 263, 159 (2017).

    Google Scholar 

  73. C. Wang, J.T. Pu, Z.Q. Hu, W. Su, M.M. Guan, B. Peng, Z.Y. Zhou, Z.G. Wang, Z.D. Jiang, and M. Liu, IEEE Trans. Magn. 55, 1 (2019).

    Google Scholar 

  74. J.R. Lee, C.T. Chan, D. Ruderman, H.Y. Chuang, R.S. Gaster, M. Atallah, P. Mallick, S.W. Lowe, S.S. Gambhir, and S.X. Wang, Nano Lett. 17, 6644 (2017).

    Google Scholar 

  75. G. Rizzi, J.R. Lee, C. Dahl, P. Guldberg, M. Dufva, S.X. Wang, and M.F. Hansen, ACS Nano 11, 8864 (2017).

    Google Scholar 

  76. J.R. Lee, I. Appelmann, C. Miething, T.O. Shultz, D. Ruderman, D. Kim, P. Mallick, S.W. Lowe, and S.X. Wang, Theranostics 8, 1389 (2018).

    Google Scholar 

  77. K. Kim, D.A. Hall, C. Yao, J.R. Lee, C.C. Ooi, D.J.B. Bechstein, Y. Guo, and S.X. Wang, Sci. Rep. 8, 16493 (2018).

    Google Scholar 

  78. G. Rizzi, J.R. Lee, P. Guldberg, M. Dufva, S.X. Wang, and M.F. Hansen, Biosens. Bioelectron. 93, 155 (2017).

    Google Scholar 

  79. P. Elda Swastika, G. Antarnusa, E. Suharyadi, T. Kato, and S. Iwata, J. Phys. Conf. Ser. 1011, 012060 (2018).

    Google Scholar 

  80. S. Ekelof, Eng. Sci. Educ. J. 10, 37 (2001).

    Google Scholar 

  81. M. Julliere, Phys. Lett. A 54, 225 (1975).

    Google Scholar 

  82. X.-H. Mu, H.-F. Liu, Z.-Y. Tong, B. Du, S. Liu, B. Liu, Z.-W. Liu, C. Gao, J. Wang, and H. Dong, Sens. Actuators B: Chem. 284, 638 (2019).

    Google Scholar 

  83. K. Enpuku, Y. Tsujita, K. Nakamura, T. Sasayama, and T. Yoshida, Supercond. Sci. Tech. 30, 053002 (2017).

    Google Scholar 

  84. M. Ura, K. Noguchi, Y. Ueoka, K. Nakamura, T. Sasayama, T. Yoshida, and K. Enpuku, IEICE Trans Electron E 99c, 669 (2016).

    Google Scholar 

  85. S.D. Jiang, T. Eggers, O. Thiabgoh, D.W. Xing, W.D. Fei, H.X. Shen, J.S. Liu, J.R. Zhang, W.B. Fang, J.F. Sun, H. Srikanth, and M.H. Phan, Sci. Rep. 7, 46253 (2017).

    Google Scholar 

  86. M. Knobel and K.R. Pirota, J. Magn. Magn. Mater. 242, 33 (2002).

    Google Scholar 

  87. M.H. Phan and H.X. Peng, Prog. Mater Sci. 53, 323 (2008).

    Google Scholar 

  88. T. Eggers, D.S. Lam, O. Thiabgoh, J. Marcin, P. Svec, N.T. Huong, I. Skorvanek, and M.H. Phan, J. Alloy. Compd. 741, 1105 (2018).

    Google Scholar 

  89. T. Eggers, O. Thiabgoh, S.D. Jiang, H.X. Shen, J.S. Liu, J.F. Sun, H. Srikanth, and M.H. Phan, AIP Adv. 7, 056643 (2017).

    Google Scholar 

  90. T. Eggers, A. Leary, M. McHenry, J. Marcin, I. Skorvanek, H. Srikanth, and M.H. Phan, J. Alloy. Compd. 682, 799 (2016).

    Google Scholar 

  91. T. Wang, Y. Zhou, C. Lei, J. Luo, S. Xie, and H. Pu, Biosens. Bioelectron. 90, 418 (2017).

    Google Scholar 

  92. L. Chen, C.C. Bao, H. Yang, D. Li, C. Lei, T. Wang, H.Y. Hu, M. He, Y. Zhou, and D.X. Cui, Biosens. Bioelectron. 26, 3246 (2011).

    Google Scholar 

  93. Z. Yang, Y. Liu, C. Lei, X.C. Sun, and Y. Zhou, Microchim. Acta 182, 2411 (2015).

    Google Scholar 

  94. R.A. Serway and J.W. Jewett, Physics for Scientists and Engineers, Vol. 8 (Belmont: Brooks/Cole, 2010), pp. 847–849.

    Google Scholar 

  95. K. Togawa, H. Sanbonsugi, A. Sandhu, M. Abe, H. Narimatsu, K. Nishio, and H. Handa, Jpn. J. Appl. Phys. 2, L1494 (2005).

    Google Scholar 

  96. M. Howard, Inductive Versus Magnetic Position Sensors. (Zettlex, 2010). https://buff.ly/2pRh6TO. Accessed 16 Apr 2019.

  97. L. Ejsing, M.F. Hansen, A.K. Menon, H.A. Ferreira, D.L. Graham, and P.P. Freitas, Appl. Phys. Lett. 84, 4729 (2004).

    Google Scholar 

  98. P.T.K. Loan, D. Wu, C. Ye, X. Li, V.T. Tra, Q. Wei, L. Fu, A. Yu, L.J. Li, and C.T. Lin, Biosens. Bioelectron. 99, 85 (2018).

    Google Scholar 

  99. J.A. Parkinson, NMR Spectroscopy Methods in Metabolic Phenotyping (Amsterdam: Elsevier, 2019), pp. 53–96.

    Google Scholar 

  100. S. Huber, C. Min, C. Staat, J. Oh, C.M. Castro, A. Haase, R. Weissleder, B. Gleich, and H. Lee, Biosens. Bioelectron. 126, 240 (2019).

    Google Scholar 

  101. M. Liong, A.N. Hoang, J. Chung, N. Gural, C.B. Ford, C. Min, R.R. Shah, R. Ahmad, M. Fernandez-Suarez, S.M. Fortune, M. Toner, H. Lee, and R. Weissleder, Nat. Commun. 4, 1752 (2013).

    Google Scholar 

  102. F. Ludwig, E. Heim, S. Mauselein, D. Eberbeck, and M. Schilling, J. Magn. Magn. Mater. 293, 690 (2005).

    Google Scholar 

  103. D.R. Baselt, G.U. Lee, M. Natesan, S.W. Metzger, P.E. Sheehan, and R.J. Colton, Biosens. Bioelectron. 13, 731 (1998).

    Google Scholar 

  104. Y.Z. Wu, Y.W. Liu, F.L. Li, Y.L. Zhou, J. Ding, and R.W. Li, Sens. Actuators B Chem. 276, 540 (2018).

    Google Scholar 

  105. M. Dirjish, Glucose Testing Drives Biosensor Market. (Sensors Online, 2018). https://www.sensorsmag.com/components/glucose-testing-drives-biosensor-market. Accessed 24 Jan 2019.

  106. R. Thusu, Strong Growth Predicted for Biosensors Market. (Sensors Online, 2010). https://www.sensorsmag.com/ components/strong-growth-predicted-for-biosensors-market. Accessed 24 Jan 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Denmark.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denmark, D.J., Bustos-Perez, X., Swain, A. et al. Readiness of Magnetic Nanobiosensors for Point-of-Care Commercialization. J. Electron. Mater. 48, 4749–4761 (2019). https://doi.org/10.1007/s11664-019-07275-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07275-7

Keywords

Navigation