Skip to main content
Log in

The Electrical Conductivity and Dielectric Response of Cupric Acetylacetonate Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The dielectric behavior and the dark electrical conductivity of cupric acetylacetonate, Cu(acac)2, thin film were studied under the influence of temperature in the range of 303–373 K and in the frequency range 42 Hz–5 MHz. The frequency and temperature dependence of dielectric constant and dielectric loss values was explained in terms of dielectric polarization theory. The dynamic response of AC conductivity toward the frequency variation follows Jonscher’s power law. Three distinct regions with different conduction mechanisms are obtained. The correlated barrier hopping (CBH) model is adapted to fit the conduction mechanism in the low and high-frequency regions. Both complex electric modulus and impedance formalisms are employed to interpret the dielectric characteristics of the Cu(acac)2. It is observed that the non-Debye relaxation mechanism is the most predominant in Cu(acac)2. The most probable relaxation time exhibits a temperature dependent behavior that obeys the Arrhenius relation with 0.54 eV activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, Chem. Soc. Rev. 43, 3259 (2014).

    Article  CAS  Google Scholar 

  2. Y. Suna, W. Xua, C. Di, and D. Zhu, Synth. Met. 225, 22 (2017).

    Article  CAS  Google Scholar 

  3. I. Turel, Molecules 20, 7951 (2015).

    Article  CAS  Google Scholar 

  4. O.V. Kharissova, M.A. Méndez-Rojas, B.I. Kharisov, U. Ortiz Méndez, and P. Elizondo Martínez, Molecules 19, 10755 (2014).

    Article  CAS  Google Scholar 

  5. W. Urbaniak, K. Jurek, K. Witt, and A. Gorączko, Chemik 65, 273 (2011).

    CAS  Google Scholar 

  6. R. Kour Sodhi and S. Paul, Catal. Surv. Asia 22, 31 (2018).

    Article  CAS  Google Scholar 

  7. T. Maruyama and T. Shirai, J. Mater. Sci. 30, 5551 (1995).

    Article  CAS  Google Scholar 

  8. A.L. Willis, Z. Chen, J. He, Y. Zhu, N.J. Turro, and S. O’Brien, J. Nanomater. (2007). https://doi.org/10.1155/2007/14858.

    Article  Google Scholar 

  9. M. Erbe, J. Hänisch, T. Freudenberg, A. Kirchner, I. Mönch, S. Kaskel, L. Schultz, and B. Holzapfel, J. Mater. Chem. A 2, 4932 (2014).

    Article  CAS  Google Scholar 

  10. H. Wang, Q. Chen Huanping Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Song, H. Chena, and Y. Yang, J. Mater. Chem. A 3, 9108 (2015).

    Article  CAS  Google Scholar 

  11. A. bin Mohd Yusoff, M. Asri Mat Teridib, and J. Jang, Nanoscale 8, 6328 (2016).

    Article  CAS  Google Scholar 

  12. W. Chen, L. Xu, X. Feng, J. Jie, and Z. He, Adv. Mater. 29, 1603923 (2017).

    Article  CAS  Google Scholar 

  13. Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, and Y. Li, Sci. Rep. 4, 4691 (2014).

    Article  CAS  Google Scholar 

  14. W. Chen, S. Luo, Z. Wan, X. Feng, X. Liu, and Z. He, Opt. Express A 253, 25 (2017).

    Google Scholar 

  15. Z. Tan, W. Zhang, C. Cui, Y. Ding, D. Qian, Q. Xu, L. Li, S. Li, and Y. Li, Chem. Phys. 14, 14589 (2012).

    CAS  Google Scholar 

  16. B. Mustafa, J. Griffin, A.S. Alsulami, D.G. Lidzey, and A.R. Buckley, Appl. Phys. Lett. 104, 0633021 (2014).

    Article  CAS  Google Scholar 

  17. S. He, S. Li, Z. Tan, H. Zheng, J. Lin, S. Hu, J. Liu, and Y. Li, J. Phys. D Appl. Phys. 47, 505101 (2014).

    Article  CAS  Google Scholar 

  18. J.A. Suttil, J.F. Kucharyson, I.L. Escalante-Garcia, P.J. Cabrera, B.R. James, R.F. Savinell, M.S. Sanford, and L.T. Thompson, J. Mater. Chem. A 3, 7929 (2015).

    Article  CAS  Google Scholar 

  19. H. Abdel-Khalek, M.I. El-Samahi, M. Abd- El Salam, and A.M. El-Mahalawy, Curr. Appl. Phys. 18, 1496 (2018).

    Article  Google Scholar 

  20. H. Abdel-Khalek, E. Shalaan, M. Abd-El Salam, and A.M. El-Mahalawy, Synth. Met. 245, 223 (2018).

    Article  CAS  Google Scholar 

  21. A.A. Dakhel, A.Y. Ali-Mohamed, and J. Non-Cryst, Solids 355, 1264 (2009).

    CAS  Google Scholar 

  22. A.A. Dakhel and A.Y. Ali-Mohamed, J. Phys. Chem. Solids 68, 162 (2007).

    Article  CAS  Google Scholar 

  23. A.A. Dakhel and A.Y. Ali-Mohamed, Solid State Sci. 10, 99 (2008).

    Article  CAS  Google Scholar 

  24. Q. Xu, F. Wang, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, ACS Appl. Mater. Interfaces 5, 10658 (2013).

    Article  CAS  Google Scholar 

  25. W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huang, Nanoscale 8, 10806 (2016).

    Article  CAS  Google Scholar 

  26. E. Ozkazanc, Synth. Met. 162, 1016 (2012).

    Article  CAS  Google Scholar 

  27. H. Abdel-Khalek, M.I. El-Samahi, and A.M. El-Mahalawy, Spectrochi. Acta Part A 202, 389 (2018).

    Article  CAS  Google Scholar 

  28. H. Abdel-Khalek, M.I. El-Samahi, and A.M. El-Mahalawy, Spectrochi. Acta Part A 199, 356 (2018).

    Article  CAS  Google Scholar 

  29. H. Sankar Mohanty, A. Kumar, B. Sahoo, P. Kumar Kurliya, and D.K. Pradhan, J. Mater. Sci.: Mater. Electron. 29, 6966 (2018).

    Google Scholar 

  30. M.M. El-Nahass, H. Kamal, M.H. Elshorbagy, and K. Abdel-Hady, Org. Electron. 14, 2847 (2013).

    Article  CAS  Google Scholar 

  31. K. Chi Kao, Dielectric Phenomena in Solids (Amsterdam: Elsevier Academic Press, 2004).

    Google Scholar 

  32. M. Chi-Mei, Z. Lide, and W. Guozhong, Nanostruct. Mater. 6, 823 (1995).

    Article  Google Scholar 

  33. M.M. El-Nahass, A.A. Atta, M.A. Kamel, and S.Y. Huthaily, Vacuum 91, 14 (2013).

    Article  CAS  Google Scholar 

  34. L. Huang, C. Fu, C. Lee, and A. Sun, Curr. Appl. Phys. 14, 122 (2014).

    Article  Google Scholar 

  35. N.M. Molokhia, Acta. Phys. Hung. 60, 107 (1986).

    CAS  Google Scholar 

  36. G.M. Tsangaris, G.C. Psarras, and N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998).

    Article  CAS  Google Scholar 

  37. T. Tepper and S. Berger, Nanostruct. Mater. 11, 1081 (1999).

    Article  CAS  Google Scholar 

  38. M. Meena and C.K. Mahadevan, Mater. Lett. 62, 3742 (2008).

    Article  CAS  Google Scholar 

  39. S. Saravanan, C.J. Mathai, S. Venkatachalam, and M.R. Anantharaman, New J. Phys. 6, 64 (2004).

    Article  CAS  Google Scholar 

  40. T.G. Abdel-Malik, M.E. Kassem, R.M. Abdel-Latif, and S.M. Khalil, Acta Phys. Pol., A 81, 681 (1992).

    Article  CAS  Google Scholar 

  41. J.C. Giuntini, J.V. Zanchetta, and J. Non-Cryst, Solids 45, 57 (1981).

    CAS  Google Scholar 

  42. S.R. Elliott, Adv. Phys. 36, 135 (1987).

    Article  CAS  Google Scholar 

  43. S. Mahboob, G. Prasad, and G.S. Kumar, Bull. Mater. Sci. 29, 347 (2006).

    Article  CAS  Google Scholar 

  44. A.A.A. Youssef, Z. Naturforsch. A 57, 263 (2002).

    Article  CAS  Google Scholar 

  45. M.F. Mostafa and A.A.A. Youssef, Z. Naturforsch. A 59, 35 (2004).

    Article  CAS  Google Scholar 

  46. S.R. Elliott, Philos. Mag. 36, 1291 (1977).

    Article  CAS  Google Scholar 

  47. M. Pollak and T.H. Geballe, Phys. Rev. 122, 1742 (1961).

    Article  CAS  Google Scholar 

  48. G.E. Pike, Phys. Rev. B 6, 1572 (1972).

    Article  CAS  Google Scholar 

  49. E.M. El-Menyawy, H.M. Zeyada, and M.M. El-Nahass, Solid State Sc. 12, 2182 (2010).

    Article  CAS  Google Scholar 

  50. S. Erdönmez and E. Ozkazanc, Polym. Int. 63, 31 (2014).

    Article  CAS  Google Scholar 

  51. C. Cramer, K. Funke, C. Vortkamp-Riickert, and A.J. Dianoux, Phys. A 191, 358 (1992).

    Article  CAS  Google Scholar 

  52. S. Mahboob, G. Prasad, and G.S. Kumar, Bull. Mater. Sci. 29, 35 (2006).

    Article  CAS  Google Scholar 

  53. A.A. Saif, Z. Azhar Zahid Jamal, and P. Poopalan, Z. Naturforsch. A 66, 784 (2011).

    Article  CAS  Google Scholar 

  54. A.A. Saif and P. Poopalan, J. Mater. Sci. Technol. 27, 802 (2011).

    Article  CAS  Google Scholar 

  55. R.H. Chen, R.Y. Chang, and S.C. Shern, J. Phys. Chem. Solids 63, 2069 (2002).

    Article  CAS  Google Scholar 

  56. R.H. Chen, C.S. Shern, and T. Fukami, J. Phys. Chem. Solids 63, 203 (2002).

    Article  CAS  Google Scholar 

  57. A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, and I. Gruszka, J. Phys. D Appl. Phys. 38, 1450 (2005).

    Article  CAS  Google Scholar 

  58. P.S. Sahoo, A. Panigrahi, S.K. Patri, and R.N.P. Choudhary, Mater. Sci-Poland 28, 763 (2010).

    CAS  Google Scholar 

  59. M. Belal Hossen and A.K.M. Akther Hossain, J. Adv. Ceram. 4, 217 (2015).

    Article  CAS  Google Scholar 

  60. J. Haigh and L.E. Sutton, J. Chem. Soc. Chem. Comm. 5, 296 (1970).

    Article  Google Scholar 

  61. R.K. Khanna and A. Bhatnagar, Can. J. Chem. 67, 804 (1989).

    Article  CAS  Google Scholar 

  62. K. Sambasiva Rao, D. Madhava Prasad, P. Murali Krishna, and T. Swarna Latha, Struct. Ceram. Silik. 52, 190 (2008).

    Google Scholar 

  63. E.N. Dicarlo and R.E. Stronski, Nature 216, 679 (1967).

    Article  CAS  Google Scholar 

  64. M. Mahdavian and M.M. Attar, Corros. Sci. 51, 409 (2009).

    Article  CAS  Google Scholar 

  65. T. Prakash, K. Padma Prasad, R. Kavitha, and S. Ramasamy, J. Appl. Phys. 102, 104 (2007).

    Article  CAS  Google Scholar 

  66. S. Saha and T.P. Sinha, Phys. Rev. B 65, 1341031 (2002).

    Google Scholar 

  67. A. Duta, C. Bharti, and T.P. Sinha, Indian J. Eng. Mater. Sci. 15, 181 (2008).

    Google Scholar 

  68. M. El Hasnaoui, M. Pedro Fernanades Graça, M. Essaid Achour, and L. Cadillon Costa, Mater. Sci. App. 2, 1421 (2011).

    Google Scholar 

  69. R.M. Hill and L.A. Dissado, J. Phys. C 18, 3829 (1985).

    Article  CAS  Google Scholar 

  70. S.A. Saafan, Phys. B 403, 2049 (2008).

    Article  CAS  Google Scholar 

  71. K.S. Cole and R.H. Cole, J. Chem. Phys. 9, 341 (1941).

    Article  CAS  Google Scholar 

  72. S.T. Bishay, Egypt. J. Solids 23, 179 (2000).

    Google Scholar 

  73. M. Rok, J.K. Prytys, V. Kinzhybalo, and G. Bator, J. Chem. Soc., Dalton Trans. 46, 2322 (2017).

    Article  CAS  Google Scholar 

  74. T.P. Iglesias, G. Vilão, J. Carlos, and R. Reis, J. Appl. Phys. 122, 074102 (2017).

    Article  CAS  Google Scholar 

  75. S. Selvasekarapandian and M. Vijayakumar, Mater. Chem. Phys. 80, 29 (2003).

    Article  CAS  Google Scholar 

  76. K. Kumari and A. Prasadand Kamal Prasad, Am. J. Mater. Sci. 6, 1 (2016).

    CAS  Google Scholar 

  77. H. Kumar Choudhary, R. Kumar, S. Patangrao Pawar, A.V. Anupama, S. Bose, and B. Sahoo, ChemistrySelect. 3, 2120 (2018).

    Article  CAS  Google Scholar 

  78. R. Kumar, H. Kumar Choudhary, S. Patangrao Pawar, S. Bose, and B. Sahoo, Phys. Chem. Chem. Phys. 19, 23268 (2017).

    Article  CAS  Google Scholar 

  79. P. Debye, Physik Z. 3, 97 (1912).

    Google Scholar 

  80. V. Schweidler, Ann. Physik 24, 711 (1907).

    Article  Google Scholar 

  81. K.W. Wagner, Ann. Physik 40, 817 (1913).

    Article  Google Scholar 

  82. W.A. Yager, Physics 7, 434 (1936).

    Article  Google Scholar 

  83. P.P. Sahay, S. Tewari, R.K. Nath, S. Jha, and M. Shamsuddin, J. Mater. Sci. 43, 4534 (2008).

    Article  CAS  Google Scholar 

  84. E. Abdel-Fattah and I. Saad, J. Optoelectron. Adv. Mater. 7, 3127 (2005).

    Google Scholar 

  85. Y. Osada and K. Yamada, Thin Solid Films 151, 71 (1987).

    Article  CAS  Google Scholar 

  86. N. Artunç and Z.Z. Öztürkf, J. Phys.: Condens. Matter 5, 559 (1993).

    Google Scholar 

  87. K. Barmak, A. Darbal, K.J. Ganesh, P.J. Ferreira, J.M. Rickman, T. Sun, B. Yao, A.P. Warren, and K.R. Coffey, J. Vac. Sci. Technol., A 32, 061503-1 (2014).

    Article  CAS  Google Scholar 

  88. A. Eddin, A. Saif, and P. Poopalan, J. Kor. Phys. Soc. 57, 1449 (2010).

    Article  CAS  Google Scholar 

  89. J. Fleig, Solid State Ionics 150, 181 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors kindly thank Prof. Shehab Amin Sallam, professor of inorganic chemistry from Suez Canal University for the helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. El-Mahalawy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Khalek, H., Abd-El Salam, M. & El-Mahalawy, A.M. The Electrical Conductivity and Dielectric Response of Cupric Acetylacetonate Thin Films. J. Electron. Mater. 48, 3736–3752 (2019). https://doi.org/10.1007/s11664-019-07138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07138-1

Keywords

Navigation