Skip to main content
Log in

Electrical Characterization of ZnInSe2/Cu0.5Ag0.5InSe2 Thin-Film Heterojunction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

ZnInSe2/Cu0.5Ag0.5InSe2 diode structures have been fabricated by thermal evaporation of stacked layers on indium tin oxide-coated glass substrates. Temperature-dependent dark current–voltage measurements were carried out to extract the diode parameters and to determine the dominant conduction mechanisms in the forward- and reverse-bias regions. The heterostructure showed three order of magnitude rectifying behavior with a barrier height of 0.72 eV and ideality factor of 2.16 at room temperature. In the high forward-bias region, the series and shunt resistances were calculated with the help of parasitic resistance relations, yielding room-temperature values of 9.54 × 102 Ω cm2 and 1.23 × 103 Ω cm2, respectively. According to the analysis of the current flow in the forward-bias region, abnormal thermionic emission due to the variation of the ideality factor with temperature and space-charge-limited current processes were determined to be the dominant conduction mechanisms in this heterostructure. In the reverse-bias region, the tunneling mechanism was found to be effective in the leakage current flow with trap density of 106 cm−3. Spectral photocurrent measurements were carried out to investigate the spectral working range of the device structure. The main photocurrent peaks observed in the spectrum corresponded to the band-edge values of the active thin-film layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Shay and J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Oxford: Pergamon, 1975).

    Google Scholar 

  2. K.L. Chopra, K.L. Paulson, and V. Dutta, Prog. Photovolt. 12, 69 (2004).

    Article  Google Scholar 

  3. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.L. Levi, J. Hohl-Ebinger, and A.W.Y. Ho-Baillie, Prog. Photovolt. Res. Appl. 26, 3 (2018).

    Article  Google Scholar 

  4. B.J. Stanbery, Crit. Rev. Sol. Stat. Mater. Sci. 27, 73 (2002).

    Article  Google Scholar 

  5. H.H. Gullu and M. Parlak, Mater. Res. Express 3, 055901 (2016).

    Article  Google Scholar 

  6. H.H. Gullu, O. Bayrakli, and M. Parlak, Thin Solid Films 639, 29 (2017).

    Article  Google Scholar 

  7. H.H. Gullu and M. Parlak, J. Mater. Sci.: Mater. Electron. 29, 11258 (2018).

    Google Scholar 

  8. G. Balaji, R. Balasundaraprabhu, N. Prabavathy, M.R. Venkatraman, V. Asokan, N. Muthukumarasamy, M.D. Kannan, and K. Sivakumaran, Mater. Lett. 222, 82 (2018).

    Article  Google Scholar 

  9. R.N. Bhattacharta and K. Ramanathan, Sol. Energy 77, 679 (2004).

    Article  Google Scholar 

  10. S. Adachi, Earth-Abundant Materials for Solar Cells (Chichester: Wiley, 2015).

    Book  Google Scholar 

  11. S. Darwish, A.S. Riad, and H.S. Soliman, Semicond. Sci. Technol. 11, 96 (1998).

    Article  Google Scholar 

  12. S. Venkatachalam, D. Mandalaraj, S.K. Narayandass, S. Velumani, P. Schabes-Retchkiman, and J.A. Ascencio, Mater. Chem. Phys. 103, 305 (2007).

    Article  Google Scholar 

  13. G.K. Rao, K.V. Bangera, and G.K. Shivakumar, Solid-State Electron. 54, 787 (2010).

    Article  Google Scholar 

  14. R. Jeyakumar, S.T. Lakshmikumar, and A.C. Rastogi, Mater. Res. Bull. 37, 617 (2002).

    Article  Google Scholar 

  15. P.V. Shapkin, A.S. Nasibov, Y.F. Vaksman, Y.A. Nitsuk, and Y.N. Purtov, Inorg. Mater. 42, 845 (2006).

    Article  Google Scholar 

  16. K. Lott, S. Shinkarenko, O. Volobujeva, L. Turn, T. Nirk, A. Öpik, R. Nisumaa, U. Kallavus, M. NÖges, V. Mikli, M. Viljus, E. Gorokhova, G. Anan’eva, A. Grebennik, and Vishnjakov, Phys. Status Solidi B 244, 1623 (2007).

    Article  Google Scholar 

  17. H.H. Gullu and M. Parlak, Mod. Phys. Lett. B 31, 1750043 (2017).

    Article  Google Scholar 

  18. H.H. Gullu, E. Coskun, and M. Parlak, Optik 144, 603 (2017).

    Article  Google Scholar 

  19. H.H. Gullu and M. Parlak, Surf. Rev. Lett. https://doi.org/10.1142/S0218625X19500835.

  20. H.H. Gullu and M. Parlak, Energy Procedia 102, 110 (2016).

    Article  Google Scholar 

  21. K. Yilmaz, M. Parlak, and C. Ercelebi, Semicond. Sci. Technol. 22, 1268 (2007).

    Article  Google Scholar 

  22. E. Coskun, H.H. Gullu, I. Candan, O. Bayrakli, M. Parlak, and C. Ercelebi, Mater. Sci. Semicond. Process. 34, 138 (2015).

    Article  Google Scholar 

  23. W. Mönch, Electronic Properties of Semiconductor Interfaces (New York: Springer, 2004).

    Book  Google Scholar 

  24. A.G. Milnes and D.L. Feucht, Heterojunction and Metal-Semiconductor Junctions (New York: Academic, 1972).

    Google Scholar 

  25. B.L. Sharma and R.K. Purohit, Semiconductor Heterojunctions (Oxford/New York/Toronto/Sydney: Pergamon, 1974).

    Google Scholar 

  26. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (New York: Plenum, 1984).

    Book  Google Scholar 

  27. H. Uslu, S. Altindal, I. Polat, H. Bayrak, and E. Bacaksiz, J. Alloys Compd. 509, 5555 (2011).

    Article  Google Scholar 

  28. S.M. Sze and K.N. Kwok, Physics of Semiconductor Devices (USA: Wiley, 2007).

    Google Scholar 

  29. P. Singh, P.K. Rout, H. Pandey, and A. Dogra, J. Mater. Sci. 53, 4806 (2018).

    Article  Google Scholar 

  30. M.A. Lampert, Rep. Prog. Phys. 27, 329 (1964).

    Article  Google Scholar 

  31. R.D. Gould and M.S. Rahman, J. Phys. D Appl. Phys. 14, 79 (1981).

    Article  Google Scholar 

  32. R.D. Gould, J. Appl. Phys. 53, 3353 (1982).

    Article  Google Scholar 

  33. A.O. Odour and R.D. Gould, Thin Solid Films 270, 387 (1995).

    Article  Google Scholar 

  34. M. Kaleli, M. Parlak, and C. Ercelebi, Semicond. Sci. Technol. 26, 105013 (2011).

    Article  Google Scholar 

  35. F. Yakuphanoglu, N. Tugluoglu, and S. Karadeniz, Phys. B 392, 188 (2007).

    Article  Google Scholar 

  36. S. Vatavu and P. Gasin, Thin Solid Films 515, 6179 (2007).

    Article  Google Scholar 

  37. C. Ercelebi, A.W. Brinkman, T.S. Furlong, and J. Woods, J. Cryst. Growth 101, 162 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Gullu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gullu, H.H., Parlak, M. Electrical Characterization of ZnInSe2/Cu0.5Ag0.5InSe2 Thin-Film Heterojunction. J. Electron. Mater. 48, 3096–3104 (2019). https://doi.org/10.1007/s11664-019-07070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07070-4

Keywords

Navigation