Skip to main content
Log in

TlInGe2S6, A Prospective Nonlinear Optical Material: First-Principles DFT Calculations of the Electronic Structure and Optical Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on results of first-principles density functional theory (DFT) calculations of the total density of states (DOS) and the partial densities of states of a quaternary TlInGe2S6 compound, a promising nonlinear optical material. The calculations are made using the augmented plane wave + local orbitals method employing the WIEN2k package. The DOS curves are calculated in different approaches for exchange-correlation potentials, and it has been established that the best coincidence with the experiment is achieved when modified Becke–Johnson exchange potential is used with correction parameter U and an account of the spin–orbit splitting effect. The present DFT calculations present that the S 3p states are the primary contributors to the TlInGe2S6 valence band, making the main input to its top and upper portion. The primary contributors to the central portion of the valence band of TlInGe2S6 are the Tl 6s and Ge 4p states, while its bottom is generated due to contributions of mainly the In 5s states with slightly smaller contributions of the Ge 4p states as well. The bottom of the conduction band is dominated by the unoccupied Ge 4s states. The conduction band minimum and the valence band maximum are located at the L point of the first Brillouin zone resulting in a direct band gap of the TlInGe2S6 compound. The key optical constants are elucidated for TlInGe2S6 based on the present DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kim, I.-S. Seo, S.W. Martin, J. Baek, P.S. Halasyamani, N. Arumugam, and H. Steinfink, Chem. Mater. 20, 6048 (2008).

    Article  Google Scholar 

  2. A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, L.N. Ananchenko, L.I. Isaenko, A. Yelisseyev, P.G. Krinitsin, and O.Y. Khyzhun, Phys. B 501, 74 (2016).

    Article  Google Scholar 

  3. A.P. Yelisseyev, L.I. Isaenko, P. Krinitsin, F. Liang, A.A. Goloshumova, DYu Naumov, and Z. Lin, Inorg. Chem. 55, 8672 (2016).

    Article  Google Scholar 

  4. H. Lin, L.-J. Zhou, and L. Chen, Chem. Mater. 24, 3406 (2012).

    Article  Google Scholar 

  5. J.A. Brant, D.J. Clark, Y.S. Kim, J.I. Jang, J.-H. Zhang, and J.A. Aitken, Chem. Mater. 26, 3045 (2016).

    Article  Google Scholar 

  6. D.J. Mei, W.L. Yin, K. Feng, Z.S. Lin, L. Bai, J.Y. Yao, and Y.C. Wu, Inorg. Chem. 51, 1035 (2012).

    Article  Google Scholar 

  7. J.P. Yohannan and K. Vidyasagar, J. Solid State Chem. 238, 147 (2016).

    Article  Google Scholar 

  8. S.-F. Li, B.-W. Liu, M.-J. Zhang, Y.-H. Fan, H.-Y. Zeng, and G.-C. Guo, Inorg. Chem. 55, 1480 (2016).

    Article  Google Scholar 

  9. W. Yin, K. Feng, W. Hao, J. Yao, and Y. Wu, Inorg. Chem. 51, 5839 (2012).

    Article  Google Scholar 

  10. A. Kumari and K. Vidyasagar, J. Solid State Chem. 180, 2013 (2007).

    Article  Google Scholar 

  11. J.P. Yohannan and K. Vidyasagar, J. Solid State Chem. 238, 291 (2016).

    Article  Google Scholar 

  12. Y. Nakamura, A. Aruga, I. Nakai, and K. Nagashima, Bul. Chem. Soc. Jpn 57, 1718 (1984).

    Article  Google Scholar 

  13. Y. Nakamura, I. Nakai, and K. Nagashima, Mater. Res. Bull. 19, 563 (1984).

    Article  Google Scholar 

  14. O.Y. Khyzhun, V.S. Babizhetskyy, I.V. Kityk, G.L. Myronchuk, J. Jędryka, G. Lakshminarayana, V.O. Levytskyy, O.V. Tsisar, L.V. Piskach, O.V. Parasyuk, A.M. El Naggar, A.A. Albassam, and M. Piasecki, J. Alloys Compd. 735, 1694 (2018).

    Article  Google Scholar 

  15. O.Y. Khyzhun, A.O. Fedorchuk, I.V. Kityk, M. Piasecki, M.Y. Mozolyuk, L.V. Piskach, O.V. Parasyuk, A.M. ElNaggar, A.A. Albassam, and P. Karasinski, Mater. Chem. Phys. 204, 336 (2018).

    Article  Google Scholar 

  16. O.Y. Khyzhun, O.V. Parasyuk, O.V. Tsisar, L.V. Piskach, G.L. Myronchuk, V.O. Levytskyy, and V.S. Babizhetskyy, J. Solid State Chem. 254, 103 (2017).

    Article  Google Scholar 

  17. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Wien: Karlheinz Schwarz, Technical Universitat Wien, Austria, 2001)ISBN 3-9501031-1-2.

    Google Scholar 

  18. P.E. Blöchl, O. Jepsen, and O.K. Andersen, Phys. Rev. B 49, 16223 (1994).

    Article  Google Scholar 

  19. J.P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  20. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  Google Scholar 

  21. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).

    Article  Google Scholar 

  22. P. Novak, F. Boucher, P. Gressier, P. Blaha, and K. Schwarz, Phys. Rev. B 63, 235123 (2001).

    Article  Google Scholar 

  23. D.D. Koelling and B.N. Harmon, J. Phys. C: Solid State Phys. 10, 3107 (1977).

    Article  Google Scholar 

  24. P.Novak, Calculation of Spin-orbit Coupling, 1997. http://www.wien2k.a/reg_user/textbooks/novak_lecture_on_spinorbit.ps. Accessed 28 Jan 2015.

  25. C. Ambrosch-Draxl and J.O. Sofo, Comp. Phys. Commun. 175, 1 (2006).

    Article  Google Scholar 

  26. F. Wooten, Optical Properties of Solids (New York: Academic Press, 1972).

    Google Scholar 

  27. A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, N.M. Denysyuk, P.N. Shkumat, A.Y. Tarasova, L.I. Isaenko, and O.Y. Khyzhun, J. Phys. Chem. Solids 91, 25 (2016).

    Article  Google Scholar 

  28. A.H. Reshak, O.Y. Khyzhun, I.V. Kityk, A.O. Fedorchuk, H. Kamarudin, S. Auluck, and O.V. Parasyuk, Sci. Adv. Mater. 5, 316 (2013).

    Article  Google Scholar 

  29. O.Y. Khyzhun, V.L. Bekenev, V.A. Ocheretova, A.O. Fedorchuk, and O.V. Parasyuk, Phys. B 461, 75 (2015).

    Article  Google Scholar 

  30. A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, P.N. Shkumat, V.A. Ocheretova, O.V. Parasyuk, and O.Y. Khyzhun, Opt. Mater. 47, 435 (2015).

    Article  Google Scholar 

  31. M. Piasecki, G.L. Myronchuk, O.V. Zamurueva, O.Y. Khyzhun, O.V. Parasyuk, A.O. Fedorchuk, A. Albassam, A.M. El-Naggar, and I.V. Kityk, Mater. Res. Express 3, 025902 (2016).

    Article  Google Scholar 

  32. T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, V.A. Ocheretova, O.V. Parasyuk, and O.Y. Khyzhun, Mater. Chem. Phys. 208, 268 (2018).

    Article  Google Scholar 

  33. O. Mebhout, T. Ouahrani, A. Morales-Garcia, B. Lasri, and J. Pilme, J. Alloys Compd. 653, 140–147 (2015).

    Article  Google Scholar 

  34. W. Khan, G. Murtaza, T. Ouahrani, A. Mahmood, R. Khenata, M.E.A. Monir, and H. Baltache, J. Alloys Compd. 674, 109 (2016).

    Article  Google Scholar 

  35. N. Kodan, S. Auluck, and B.R. Mehta, J. Alloys Compd. 675, 236 (2016).

    Article  Google Scholar 

  36. A. Bedjaoui, A. Bouhemadou, S. Aloumi, R. Khenata, S. Bin-Omran, Y. Al-Douri, F. Saad Saoud, and S. Bensalem, Solid State Sci. 70, 21 (2017).

    Article  Google Scholar 

  37. T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, O.V. Parasyuk, V.A. Ocheretova, and O.Y. Khyzhun, J. Alloys Compd. 732, 372 (2018).

    Article  Google Scholar 

  38. O.Y. Khyzhun, V.L. Bekenev, N.M. Denysyuk, I.V. Kityk, P. Rakus, A.O. Fedorchuk, S.P. Danylchuk, and O.V. Parasyuk, Opt. Mater. 36, 251 (2013).

    Article  Google Scholar 

  39. O.Y. Khyzhun, V.L. Bekenev, N.M. Denysyuk, O.V. Parasyuk, and A.O. Fedorchuk, J. Alloys Compd. 582, 802 (2014).

    Article  Google Scholar 

  40. M.G. Brik, I.V. Kityk, N.M. Denysyuk, O.Y. Khyzhun, S.I. Levkovets, O.V. Parasyuk, A.O. Fedorchuk, and G.L. Myronchuk, Phys. Chem. Chem. Phys. 16, 12838 (2014).

    Article  Google Scholar 

  41. A.A. Lavrentyev, B.V. Gabrelian, T.V. Vu, P.N. Shkumat, P.M. Fochuk, O.V. Parasyuk, I.V. Kityk, I.V. Luzhnyi, O.Y. Khyzhun, and M. Piasecki, Inorg. Chem. 55, 10547 (2016).

    Article  Google Scholar 

  42. O.Y. Khyzhun, G.L. Myronchuk, O.V. Zamuruyeva, and O.V. Parasyuk, Opt. Mater. 38, 10 (2014).

    Article  Google Scholar 

  43. O.V. Parasyuk, V.S. Babizhetskyy, O.Y. Khyzhun, V.O. Levytskyy, I.V. Kityk, G.L. Myronchuk, O.V. Tsisar, L.V. Piskach, J. Jedryka, A. Maciag, and M. Piasecki, Crystals 7, 341 (2017).

    Article  Google Scholar 

  44. G.E. Davydyuk, O.Y. Khyzhun, A.H. Reshak, H. Kamarudin, G.L. Myronchuk, S.P. Danylchuk, A.O. Fedorchuk, L.V. Piskach, M.Y. Mozolyuk, and O.V. Parasyuk, Phys. Chem. Chem. Phys. 15, 6965 (2013).

    Article  Google Scholar 

  45. G.L. Myronchuk, G.E. Davydyuk, O.V. Parasyuk, O.Y. Khyzhun, R.A. Andrievski, A.O. Fedorchuk, S.P. Danylchuk, L.V. Piskach, and M.Y. Mozolyuk, J. Mater. Sci.: Mater. Electron. 24, 3555 (2013).

    Google Scholar 

  46. G.-M. Li, Q. Liu, K. Wu, Z.-H. Yang, and S.-L. Pan, Dalton Trans. 46, 2778 (2017).

    Article  Google Scholar 

  47. M. Städele, M. Moukara, J.A. Majewski, P. Vogl, and A. Görling, Phys. Rev. B 59, 10031 (1999).

    Article  Google Scholar 

  48. J. Kohanoff and N.I. Gidopoulos, Density Functional Theory: Basics, New Trends and Applications, ed. by S. Wilson. Handbook of Molecular Physics and Quantum Chemistry, Vol. 2, Part 5, Chapter 26, (Wiley, Chichester, 2003), pp. 532–568.

  49. A.J. Cohen, P. Mori-Sánchez, and W. Yang, Phys. Rev. B 77, 115123 (2008).

    Article  Google Scholar 

  50. A.A. Lavrentyev, B.V. Gabrelian, I.Y. Nikiforov, O.V. Parasyuk, and O.Y. Khyzhun, J. Alloys Compd. 481, 28 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Y. Khyzhun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, T.V., Lavrentyev, A.A., Gabrelian, B.V. et al. TlInGe2S6, A Prospective Nonlinear Optical Material: First-Principles DFT Calculations of the Electronic Structure and Optical Properties. J. Electron. Mater. 47, 5525–5536 (2018). https://doi.org/10.1007/s11664-018-6449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6449-5

Keywords

Navigation