Skip to main content

Advertisement

Log in

Neural Modeling of Fuzzy Controllers for Maximum Power Point Tracking in Photovoltaic Energy Systems

  • Topical Collection: Electronic Materials for Renewable Energy Applications
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

One field in which electronic materials have an important role is energy generation, especially within the scope of photovoltaic energy. This paper deals with one of the most relevant enabling technologies within that scope, i.e, the algorithms for maximum power point tracking implemented in the direct current to direct current converters and its modeling through artificial neural networks (ANNs). More specifically, as a proof of concept, we have addressed the problem of modeling a fuzzy logic controller that has shown its performance in previous works, and more specifically the dimensionless duty cycle signal that controls a quadratic boost converter. We achieved a very accurate model since the obtained medium squared error is 3.47 × 10−6, the maximum error is 16.32 × 10−3 and the regression coefficient R is 0.99992, all for the test dataset. This neural implementation has obvious advantages such as a higher fault tolerance and a simpler implementation, dispensing with all the complex elements needed to run a fuzzy controller (fuzzifier, defuzzifier, inference engine and knowledge base) because, ultimately, ANNs are sums and products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Mukai, M. Tomasella, A. Parlikad, N. Abe, and Y. Ueda, IEEE Trans. Sustain. Energy 5(4), 1176 (2014).

    Article  Google Scholar 

  2. EnergyTrend. PV spot price. EnergyTrend, a Business Division of TrendForce Corp (2017). http://pv.energytrend.com/pricequotes.html. Access 19 May 2018

  3. A. Anurag, S. Bal, S. Sourav, and M. Nanda, Int. J. Sustain. Energy 35(5), 478 (2016).

    Article  Google Scholar 

  4. A. Khateb, N. Rahim, J. Selvaraj, and M. Uddin, IEEE Trans. Ind. Appl. 50(4), 2349 (2014).

    Article  Google Scholar 

  5. N. Altin, Adv. Electr. Comput. Eng. 13(3), 65 (2013).

    Article  Google Scholar 

  6. S. Ozdemir, N. Altin, and I. Sefa, Int. J. Hydrog. Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.02.191.

    Google Scholar 

  7. Y. Alcazar, D. de Souza Oliveira, F. Tofol, and R. Torrico-Bascope, IEEE Trans. Ind. Electron. 60(10), 4438 (2013).

    Article  Google Scholar 

  8. O. Lopez-Santos, L. Martinez-Salamero, G. Garcia, H. Valderrama-Blavi, and D. Zambrano-Prada, IEEE Trans. Power Electron. 32(3), 2253 (2017).

    Article  Google Scholar 

  9. B. Axelrod, Y. Berkovich, and A. Ioinovici, in IEEE 32nd Annual Conference on Proceeding of Industrial Electronics, IECON, vol. 1, p. 2366 (2006)

  10. J. Leyva-Ramos, M. Ortiz-Lopez, L. Diaz-Saldierna, and J. Morales-Saldana, IET Power Electron. 2, 605 (2009).

    Article  Google Scholar 

  11. Y. Hsieh, J. Chen, T. Liang, and L. Yang, IET Power Electron. 5(1), 11 (2012).

    Article  Google Scholar 

  12. T. Yan, J. Xu, Z. Dong, L. Shu, and P. Yang, in 2013 International Conference on Communications, Circuits and Systems (ICCCAS), Chengdu, China, pp. 402–406 (2013). https://doi.org/10.1109/ICCCAS.2013.6765367.

  13. N. Altin and E. Ozturk, in ECAI, 2016—International Conference—8th Edition Electronics, Computers and Artificial Intelligence 30 June–02 July, 2016 (Ploiesti, Romania, 2016)

  14. R. Kadri, J.-P. Gaubert, G. Champenois, and M. Mostefai, in Proceedings of the 19th International Conference on Electrical Machines (ICEM ‘10), Rome, Italy (2010)

  15. M. Green, Y. Hishikawa, W. Warta, E. Dunlop, D. Levi, J. Hohl-Ebinger, and A. Ho-Baillie, Prog. Photovolt. 25(7), 668 (2017).

    Article  Google Scholar 

  16. J. Ramos-Hernanz, J. Lopez-Guede, I. Zamora-Belver, P. Eguia-Lopez, E. Zulueta, O. Barambones, and F. Oterino-Echavarri, Int. J. Tech. Phys. Probl. Eng. (IJTPE) 6(4), 37 (2014)

    Google Scholar 

  17. J.M. Lopez-Guede, J.A. Ramos-Hernanz, E. Zulueta, U. Fernadez-Gamiz, and F. Oterino, Int. J. Hydrog. Energy 41(29), 12672 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.175 (Special Issue on 3rd European Conference on Renewable Energy Systems (ECRES 2015), 7-10 October 2015, Kemer, Antalya, Turkey)

  18. J.M. Lopez-Guede, J.A. Ramos-Hernanz, E. Zulueta, U. Fernandez-Gamiz, and G. Azkune, Int. J. Hydrog. Energy 42(28), 18103 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.062. http://www.sciencedirect.com/science/article/pii/S0360319917305372 (Special Issue on The 4th European Conference on Renewable Energy Systems (ECRES 2016), 28–31 August 2016, Istanbul, Turkey

  19. O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(8), 1098 (2003).

    Article  Google Scholar 

  20. J. Rosas-Caro, J. Ramirez, F. Peng, and A. Valderrabano, ET Power Electron. 3(1), 129 (2010).

    Google Scholar 

  21. D. Wijeratne and G. Moschopoulos, IEEE Trans. Circuits Syst. I Reg. Pap. 59(2), 426 (2012).

    Article  Google Scholar 

  22. V. Salas, E. Olias, A. Barrado, and A. Lazaro, Solar Energy Mater. Sol. Cells 90(11), 1555 (2006).

    Article  Google Scholar 

  23. T. Esram and P. Chapman, IEEE Trans. Energy Convers. 22(2), 439 (2007).

    Article  Google Scholar 

  24. N. Altin and S. Ozdemir, Energy Convers. Manag. 69, 17 (2013).

    Article  Google Scholar 

  25. B. Widrow and M. Lehr, Proc. IEEE 78(9), 1415 (1990). https://doi.org/10.1109/5.58323

    Article  Google Scholar 

  26. K. Narendra and K. Parthasarathy, IEEE Trans. Neural Netw. 1(1), 4 (1990). https://doi.org/10.1109/72.80202

    Article  Google Scholar 

  27. J.M. Lopez-Guede, J.A. Ramos-Hernanz, E. Zulueta Guerrero, and U. Fernandez-Gamiz, in The Proceedings of Third European Conference on Renewable Energy Systems-ECRES 2016, ed. by E. Kurt, p. 885 (2016)

  28. J.M. Lopez-Guede, J.A. Ramos-Hernanz, E. Zulueta Guerrero, and U. Fernandez-Gamiz, in The Proceedings of Third European Conference on Renewable Energy Systems-ECRES 2015, ed. by E. Kurt (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Manuel Lopez-Guede.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Guede, J.M., Ramos-Hernanz, J., Altın, N. et al. Neural Modeling of Fuzzy Controllers for Maximum Power Point Tracking in Photovoltaic Energy Systems. J. Electron. Mater. 47, 4519–4532 (2018). https://doi.org/10.1007/s11664-018-6407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6407-2

Keywords

Navigation