Skip to main content

Advertisement

Log in

Efficiency Enhancement of CH3NH3SnI3 Solar Cells by Device Modeling

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lead halide perovskite solar cells (LHPSC) have great potential, with conversion efficiency exceeding 20%. However, their toxic nature and difficult fabrication prevent their consideration for commercial applications. To address this, numerical analysis was performed to propose a structure for lead-free perovskite solar cells with MASnI3 as absorber layer. Device modeling for Cd1−xZnxS as electron transport layer (ETL) and methylamine tin halide as hole transport layer (HTL) was carried out using a solar cell capacitance simulator. The simulation results revealed the dependence of the open-circuit voltage (VOC), short-circuit current (JSC), fill factor (FF), and power conversion efficiency on the HTL valence-band offset, absorber layer thickness, absorber layer doping concentration, ETL band offset, minority-carrier diffusion length, and defects at the HTL–absorber and absorber–ETL interfaces. An optimum absorber layer thickness was confirmed, being well consistent with the range for practical absorber layer designs. Moreover, conversion efficiency of 18.71% was found for absorber thickness of 500 nm and doping concentration of 1 × 1016 cm−3. These results will provide important guidelines for design of low-cost perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. De Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.J. Haug, J.H. Yum, and C. Ballif, J. Phys. Chem. Lett. (2014). https://doi.org/10.1021/jz500279b.

    Google Scholar 

  2. C. Quarti, E. Mosconi, J.M. Ball, V. D’Innocenzo, C. Tao, S. Pathak, H.J. Snaith, A. Petrozza, and F. De Angelis, Energy Environ. Sci. (2016). https://doi.org/10.1039/C5EE02925B.

    Google Scholar 

  3. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Sci. Express (2015). https://doi.org/10.1126/science.aaa5760.

    Google Scholar 

  4. W. Liao, D. Zhao, Y. Yu, N. Shrestha, K. Ghimire, C.R. Grice, C. Wang, Y. Xiao, A.J. Cimaroli, R.J. Ellingson, N.J. Podraza, K. Zhu, R.G. Xiong, and Y. Yan, J. Am. Chem. Soc. (2016). https://doi.org/10.1021/jacs.6b08337.

    Google Scholar 

  5. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. (2009). https://doi.org/10.1021/ja809598r.

    Google Scholar 

  6. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, Nanoscale (2011). https://doi.org/10.1039/c1nr10867k.

    Google Scholar 

  7. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, and N.G. Park, Sci. Rep. (2012). https://doi.org/10.1038/srep00591.

    Google Scholar 

  8. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Nature (2013). https://doi.org/10.1038/nature12340.

    Google Scholar 

  9. M. Liu, M.B. Johnston, and H.J. Snaith, Nature (2013). https://doi.org/10.1038/nature12509.

    Google Scholar 

  10. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, and A.W.Y. Ho-Baillie, Prog. Photovolt. Res. Appl. (2016). https://doi.org/10.1002/pip.2855.

    Google Scholar 

  11. Y. Yu, D. Zhao, C.R. Grice, W. Meng, C. Wang, W. Liao, A.J. Cimaroli, H. Zhang, K. Zhu, and Y. Yan, RSC Adv. (2016). https://doi.org/10.1039/C6RA19476A.

    Google Scholar 

  12. T. Fujihara, S. Terakawa, T. Matsushima, C. Qin, M. Yahiro, and C. Adachi, J. Mater. Chem. C (2017). https://doi.org/10.1039/C6TC05069G.

    Google Scholar 

  13. T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong, P.P. Boix, A.C. Grimsdale, S.G. Mhaisalkar, and N. Mathews, J. Mater. Chem. A (2015). https://doi.org/10.1039/C5TA00190K.

    Google Scholar 

  14. Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye, H. Rao, Z. Liu, Z. Bian, and C. Huang, Adv. Sci. (2017). https://doi.org/10.1002/advs.201700204.

    Google Scholar 

  15. F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, and M.G. Kanatzidis, Nat. Photonics (2014). https://doi.org/10.1038/nphoton.2014.82.

    Google Scholar 

  16. J.S.J. Song, S.S. Li, S. Yoon, W.K. Kim, J.K.J. Kim, J. Chen, V. Craciun, T.J. Anderson, O.D. Crisalle, and F.R.F. Ren, Growth and characterization of CdZnS thin film buffer layers by chemical bath deposition, in Conference Record of the Thirty-First IEEE Photovoltaics Specialists, Conference 2005 (2005). https://doi.org/10.1109/pvsc.2005.1488166.

  17. S. Ullah, H. Ullah, M. Mollar, and B. Mari, Fabrication of Cd1−xZnxS buffer layer deposited by chemical bath deposition for photovoltaic applications, in 2016 International Renewable Sustainable Energy Conference. IEEE (2016). https://doi.org/10.1109/irsec.2016.7983932.

  18. L.L. Baranowski, S. Christensen, A.W. Welch, S. Lany, M. Young, E.S. Toberer, and A. Zakutayev, Mater. Chem. Front. (2017). https://doi.org/10.1039/C6QM00291A.

    Google Scholar 

  19. K.T.R. Reddy and P.J. Reddy, J. Phys. D Appl. Phys. (1992). https://doi.org/10.1088/0022-3727/25/9/011.

    Google Scholar 

  20. M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films (2000). https://doi.org/10.1016/S0040-6090(99)00825-1.

    Google Scholar 

  21. K.R. Adhikari, S. Gurung, B.K. Bhattarai, and B.M. Soucase, Phys. Status Solidi Curr. Top. Solid State Phys. (2016). https://doi.org/10.1002/pssc.201510078.

    Google Scholar 

  22. T. Minemoto and M. Murata, J. Appl. Phys. (2014). https://doi.org/10.1063/1.4891982.

    Google Scholar 

  23. Y.H. Khattak, F. Baig, S. Ullah, B. Marí, S. Beg, and H. Ullah, J. Renew. Sustain. Energy (2018). https://doi.org/10.1063/1.5023478.

    Google Scholar 

  24. Y.H. Khattak, F. Baig, T. Hanae, S. Ullah, B. Marí, S. Beg, and H. Ullah, Curr. Appl. Phys. (2018). https://doi.org/10.1016/j.cap.2018.03.013.

    Google Scholar 

  25. Y.H. Khattak, F. Baig, S. Ullah, B. Marí, S. Beg, and H. Ullah, Optik (Stuttg) (2018). https://doi.org/10.1016/j.ijleo.2018.03.055.

    Google Scholar 

  26. H.-J. Du, W.-C. Wang, and J.-Z. Zhu, Chin. Phys. B (2016). https://doi.org/10.1088/1674-1056/25/10/108802.

    Google Scholar 

  27. T. Minemoto and M. Murata, Sol. Energy Mater. Sol. Cells (2015). https://doi.org/10.1016/j.solmat.2014.10.036.

    Google Scholar 

  28. U. Rau and H.W. Schock, Appl. Phys. A Mater. Sci. Process. (1999). https://doi.org/10.1007/s003390050984.

    Google Scholar 

  29. M. Turcu and U. Rau, J. Phys. Chem. Solids (2003). https://doi.org/10.1016/S0022-3697(03)00137-9.

    Google Scholar 

  30. K. Tanaka, T. Minemoto, and H. Takakura, Sol. Energy (2009). https://doi.org/10.1016/j.solener.2008.09.003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousaf Hameed Khattak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baig, F., Khattak, Y.H., Marí, B. et al. Efficiency Enhancement of CH3NH3SnI3 Solar Cells by Device Modeling. J. Electron. Mater. 47, 5275–5282 (2018). https://doi.org/10.1007/s11664-018-6406-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6406-3

Keywords

Navigation