Skip to main content
Log in

Effect of Precursors on Key Opto-electrical Properties of Successive Ion Layer Adsorption and Reaction-Prepared Al:ZnO Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Aluminum-doped zinc oxide (Al:ZnO) thin films were deposited on glass substrates by successive ion layer adsorption and reaction (SILAR) method using different precursors. This inexpensive SILAR method involves dipping of substrate sequentially in zinc solution, de-ionized water and ethylene glycol in multiple cycles. Prepared films were investigated by x-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), optical absorption, photoluminescence (PL), Raman spectroscopy and electrical studies. XRD study confirmed incorporation of aluminum in ZnO lattice with a polycrystalline hexagonal wurtzite structure of the films. The crystallite size determined by the Scherrer equation showed an increase from 28 nm to 35 nm for samples S1 to S4, respectively. SEM study showed smooth morphology with homogeneous distribution of particles. From the AFM images, the surface roughness was found to change according to precursors. For the optical analysis, the zinc chloride precursor showed high optical transmittance of about 90% in the visible range with a band gap value 3.15 eV. The room-temperature PL spectra exhibited a stronger violet emission peak at 420 nm for all the prepared samples. The Raman spectra showed a peak around 435 cm−1 which could be assigned to non-polar optical phonons (E2-high) mode AZO films of a ZnO wurtzite structure. Hall effect measurements showed n-type conductivity with low resistivity (ρ) and high carrier concentrations (n) of 2.39 × 10−3 Ω-cm and 8.96 × 1020 cm−3, respectively, for the film deposited using zinc chloride as precursor. The above properties make the prepared AZO film to be regarded as a very promising electrode material for fabrication of optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Chang, C. Lin, J. Chen, and M. Hsu, Ceram. Int. 40, 10867 (2014).

    Article  Google Scholar 

  2. Y. Liu and W. Gao, J. Alloys Compd. 629, 84 (2015).

    Article  Google Scholar 

  3. P.-Y. Lee, S.-P. Chang, J.-F. Chang, E.-H. Hsu, and S.-J. Chang, Int. J. Electrochem. Sci. 8, 6425 (2013).

    Google Scholar 

  4. Y. Cao, L. Miao, S. Tanemura, M. Tanemura, Y. Kuno, Y. Hayashi, and Y. Mori, Jpn. J. Appl. Phys. 45, 1623 (2006).

    Article  Google Scholar 

  5. S.H. Jeong, B.N. Park, D.G. Yoo, and J.H. Boo, J. Korean Phys. Soc. 50, 622 (2007).

    Article  Google Scholar 

  6. H. Mahdhi, Z. Ben Ayadi, J.L. Gauffier, K. Djessas, and S. Alaya, Opt. Mater. 45, 97 (2015).

    Article  Google Scholar 

  7. A. Zaier, A. Meftah, A.Y. Jaber, A.A. Abdelaziz, and M.S. Aida, J. King Saud Univ. Sci. 27, 356 (2015).

    Article  Google Scholar 

  8. A. Mhamdi, B. Ouni, A. Amlouk, K. Boubaker, and M. Amlouk, J. Alloys Compd. 582, 810 (2014).

    Article  Google Scholar 

  9. V. Cracium, J. Elders, J.G.E. Gardeniers, and I.W. Boyd, Appl. Phys. Lett. 65, 2963 (1994).

    Article  Google Scholar 

  10. C.K. Ong and S.J. Wang, Appl. Surf. Sci. 185, 47 (2001).

    Article  Google Scholar 

  11. A. Kuroyanagi, Jpn. J. Appl. Phys. 28, 219 (1989).

    Article  Google Scholar 

  12. Y. Natsume, H. Sakata, T. Hirayama, and H. Yanagida, J. Appl. Phys. 72, 4203 (1992).

    Article  Google Scholar 

  13. D. Bao, H. Gu, and A. Kuang, Thin Solid Films 312, 37 (1998).

    Article  Google Scholar 

  14. A.S. Enigochitra, S. Ponmani, and P. Perumal, Int. J. Chem. Tech. Res. 13, 5241 (2014).

    Google Scholar 

  15. S. Mondal, K.P. Kanta, and P. Mitra, J. Phys. Sci. 12, 221 (2008).

    Google Scholar 

  16. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed. (Upper Saddle River: Prentice Hall, 2001).

    Google Scholar 

  17. K. Ravichandran, P.V. Rajkumar, B. Sakthivel, K. Swaminathan, and L. Chinnappa, Ceram. Int. 40, 12375 (2014).

    Article  Google Scholar 

  18. N. Bouazizi, F. Ajala, M. Khelil, H. Lachheb, K. Khirouni, A. Houas, and A. Azzouz, J. Mater. Sci. Mater. Electron. 27, 11168 (2016).

    Article  Google Scholar 

  19. R. Mariappan, M. Ragavendar, and V. Ponnuswamy, J. Alloys Compd. 509, 7337 (2011).

    Article  Google Scholar 

  20. R.R. Kasar, N.G. Despande, Y.G. Gudage, J.C. Vyas, and R. Sharma, Phys. B 403, 3724 (2008).

    Article  Google Scholar 

  21. M. Vasanthi, K. Ravichandran, N.J. Begum, G. Muruganantham, S. Snega, A. Panneerselvam, and P. Kavitha, Superlattic Microst 55, 180 (2013).

    Article  Google Scholar 

  22. A. Douayar, H. Bihri, A. Mzerd, A. Belayachi, and M. Abd-Lefdil, Sens. Transducer 27, 156 (2014).

    Google Scholar 

  23. N. El-Kadry, A. Ashour, and S.A. Mahmoud, Thin Solid Films 269, 112 (1995).

    Article  Google Scholar 

  24. S.-C. Shei, S.-J. Chang, and P.-Y. Lee, J. Electrochem. Soc. 158, 08 (2011).

    Article  Google Scholar 

  25. K.X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, Energy Environ. Sci. 7, 2725 (2014).

    Article  Google Scholar 

  26. K. Ravichandran, R. Mohan, N. Jabena Begum, S. Snega, K. Swaminathan, C. Ravidhas, B. Sakthivel, and S. Varadharajaperumal, Vaccum 107, 68 (2014).

    Article  Google Scholar 

  27. J. Tauc, Amorphous and Liquid Semiconductors (New York: Plenum Press, 1974).

    Book  Google Scholar 

  28. T. Sivaraman, V. Narasimman, V.S. Nagarethinam, and A.R. Balu, Progr Nat. Sci. Mater. Int. 25, 392 (2015).

    Article  Google Scholar 

  29. N.S. Narayanan and N.K. Deepak, Pramana. J. Phys. 87, 87 (2016).

    Google Scholar 

  30. J.A. Najim and J.M. Rozaiq, Int. Lett. Chem. Phys. Astron. 15, 137 (2013).

    Article  Google Scholar 

  31. R. Zamiria, A.F. Lemosa, A. Reblo, H.A. Ahangar, and J.M.F. Ferreir, Ceram. Int. 40, 523 (2014).

    Article  Google Scholar 

  32. S. Suwanboon, P. Amornpitoksuk, P. Bangrak, A. Sukolrat, and N. Muensit, J. Ceram. Process. Res. 11, 547 (2010).

    Google Scholar 

  33. C. Manoharan, G. Pavithra, M. Bououdina, S. Dhanapandian, and P. Dhamodharan, Appl. Nanosci. 6, 815 (2015).

    Article  Google Scholar 

  34. B.J. Jin, S. Im, and S.Y. Lee, Thin Solid Films 366, 107 (2000).

    Article  Google Scholar 

  35. Y.S. Fu, X.W. Du, S.A. Kulinich, J.S. Qiu, W.J. Qin, R. Li, J. Sun, and J. Liu, J. Am. Chem. Soc. 129, 16029 (2007).

    Article  Google Scholar 

  36. K. Ravichandran, R. Mohan, N. Jabena Begum, K. Swaminathan, and C. Ravidhass, J. Phys. Chem. Solids 74, 1794 (2013).

    Article  Google Scholar 

  37. H.S. Kang, J.S. Kang, J.W. Kim, and S.Y. Lee, J. Appl. Phys. 95, 1246 (2004).

    Article  Google Scholar 

  38. R.R. Deshmukh, D.H. Ryu, C.E. Song, Cinchona Alkaloids in Synthesis and Catalysis (Wiley-VCH Verlag GmbH & Co. KGaA, 2009), pp. 73–104.

  39. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, and M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003).

    Article  Google Scholar 

  40. T.C. Damen, S.P.S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).

    Article  Google Scholar 

  41. J.M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977).

    Article  Google Scholar 

  42. M.H. Manghnani, A. Hushur, T. Sekine, W. Jingshi, J.F. Stebbins, and Q. Williams, J. Appl. Phys. 109, 113509 (2011).

    Article  Google Scholar 

  43. M. Thirumoorthi and J. Thomas Joseph Prakash, Superlattice Microstruct. 89, 378 (2016).

    Article  Google Scholar 

  44. C.A. Gupta, S. Mangal, and U.P. Singh, Appl. Surf. Sci. 288, 411 (2014).

    Article  Google Scholar 

  45. J. Li, J. Xu, Q. Xu, and G. Fang, J. Alloys Compd. 542, 151 (2012).

    Article  Google Scholar 

  46. W.Y. Zhang, D.K. He, Z.Z. Liu, L.J. Sun, and Z.X. Fu, Optoelectron. Adv. Mater. Rapid Commun. 11, 1651 (2010).

    Google Scholar 

  47. A. Crossay, S. Buecheler, L. Kranz, J. Perrenoud, and C.M. Fella, Solar Energy Mater. Solar Cells 101, 283 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohd. Shkir or S. AlFaify.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to the current article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.D.A., Valanarasu, S., Ganesh, V. et al. Effect of Precursors on Key Opto-electrical Properties of Successive Ion Layer Adsorption and Reaction-Prepared Al:ZnO Thin Films. J. Electron. Mater. 47, 1335–1343 (2018). https://doi.org/10.1007/s11664-017-5920-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5920-z

Keywords

Navigation