Skip to main content
Log in

Correlation of Etch Pits and Dislocations in As-grown and Thermal Cycle-Annealed HgCdTe(211) Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports observations of the different types of etch pits and dislocations present in thick HgCdTe (211) layers grown by molecular beam epitaxy on CdTe/Si (211) composite substrates. Dislocation analysis for as-grown and thermal cycle-annealed samples has been carried out using bright-field transmission electron microscopy. Triangular pits present in as-grown material are associated with a mixture of Frank partials and perfect dislocations, while pits with fish-eye shapes have perfect dislocations with \( \frac{1}{2}[0\bar{1}1] \) Burgers vector. The dislocations beneath skew pits are more complex as they have two different crystallographic directions, and are associated with a mixture of Shockley partials and perfect dislocations. Dislocation analysis of samples after thermal cycle annealing (TCA) shows that the majority of dislocations under the etch pits are short segments of perfect dislocations with \( \frac{1}{2}[0\bar{1}1] \) Burgers vector while the remainder are Shockley partials. The absence of fish-eye shape pits in TCA samples suggests that they are associated with mobile dislocations that have reacted during annealing, causing the overall etch pit density to be reduced. Very large pits with a density ∼2×103 cm−2 are observed in as-grown and TCA samples. These defects thread from within the CdTe buffer layer into the upper regions of the HgCdTe layers. Their depth in as-grown material is so large that it is not possible to locate and identify the underlying defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009).

    Article  Google Scholar 

  2. P. Norton, Opto-Electron. Rev. 10, 159 (2009).

    Google Scholar 

  3. J.W. Garland and S. Sivananthan, Springer Handbook of Crystal Growth, Chapter 32, ed. G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley (Heidelberg: Springer, 2010), p. 1076.

    Google Scholar 

  4. J.D. Benson, L.O. Bubulac, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasqez, L.A. Almeida, A. Stoltz, J.M. Arias, G. Brill, Y. Chen, P.S. Wijewarnasuriya, S. Farrel, and U. Lee, J. Electron. Mater. 41, 2971 (2012).

    Article  Google Scholar 

  5. J.J. Kim, R.N. Jacobs, L.A. Almeida, M. Jaime-Vasquez, C. Nozaki, and D.J. Smith, Electron. Mater. 42, 3142 (2013).

    Article  Google Scholar 

  6. W. Lei, R.J. Gu, J. Antoszewski, J. Dell, and L. Faraone, J. Electron. Mater. 43, 2788 (2014).

    Article  Google Scholar 

  7. A. Rogalski, J. Antoszewski, and L. Faraone, Appl. Phys. Rev. 2, 041303 (2015).

    Article  Google Scholar 

  8. P. Wijewarnasuriya, Y. Chen, G. Brill, N. Dhar, D. Benson, L. Bubulac, and D. Edwall, J. Electron. Mater. 39, 1110 (2010).

    Article  Google Scholar 

  9. W.F. Zhao, R.N. Jacobs, M. Jaime-Vasques, L.O. Bubulac, and D.J. Smith, J. Electron. Mater. 40, 1733 (2011).

    Article  Google Scholar 

  10. K. Jówikowski and A. Rogalski, J. Electron. Mater. 29, 736 (2000).

    Article  Google Scholar 

  11. R.N. Jacobs, P.J. Smith, J.K. Markunas, J.D. Benson, and J. Pellegrino, J. Electron. Mater. 39, 1036 (2010).

    Article  Google Scholar 

  12. J.D. Benson, S. Farrell, G. Brill, Y. Chen, P.S. Wijewarnasuriya, L.O. Bubulac, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, A. Stoltz, U. Lee, M.F. Vileal, J. Peterson, S.M. Johnson, D.D. Lofgreen, D. Rhiger, E.A. Patten, and P.M. Goetz, J. Electron. Mater. 40, 1847 (2011).

    Article  Google Scholar 

  13. S. Farrell, Mulpuri V. Rao, G. Brill, Y. Chen, P. Wijewarnasuriya, N. Dhar, J.D. Benson, and K. Harris, J. Electron. Mater. 40, 1727 (2011).

    Article  Google Scholar 

  14. A.J. Stoltz, J.D. Benson, R. Jacobs, P. Smith, L.A. Almeida, M. Carmody, S. Farrell, P. Wijewarnasuriya, G. Brill, and Y. Chen, J. Electron. Mater. 41, 2949 (2012).

    Article  Google Scholar 

  15. S. Simingalam, J. Pattison, Y. Chen, P. Wijewarnasuriya, and Mulpuri V. Rao, J. Electron. 45, 4668 (2016).

    Article  Google Scholar 

  16. S. Farrell, Mulpuri V. Rao, G. Brill, Y. Chen, P. Wijewarnasuriya, N. Dhar, J.D. Benson, and K. Harris, J. Electron. Mater. 42, 3097 (2013).

  17. R.N. Jacobs, J. Markunas, J. Pellegrino, L.A. Almeida, M. Groenert, M. Jaime-Vasquez, N. Mahadik, C. Andrews, and S.B. Qadri, J. Cryst. Growth 310, 2960 (2008).

    Article  Google Scholar 

  18. J.D. Benson, L.O. Bubulac, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, A. Stoltz, P.S. Wijewarnasuriya, G. Brill, Y. Chen, U. Lee, M.F. Villa, J. Peterson, S.M. Johnson, D.D. Lofgren, D. Rhiger, E.A. Patten, and P.M. Goetz, J. Electron. Mater. 39, 1080 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vaghayenegar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaghayenegar, M., Jacobs, R.N., Benson, J.D. et al. Correlation of Etch Pits and Dislocations in As-grown and Thermal Cycle-Annealed HgCdTe(211) Films. J. Electron. Mater. 46, 5007–5019 (2017). https://doi.org/10.1007/s11664-017-5494-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5494-9

Keywords

Navigation