Skip to main content
Log in

Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current–voltage (IV) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Tsai, T.C. Chang, P.T. Liu, P.Y. Yang, Y.C. Kuo, K.T. Kin, P.L. Chang, and F.S. Huang, Appl. Phys. Lett. 91, 012109 (2007).

    Article  Google Scholar 

  2. C.T. Tsai, T.C. Chang, K.T. Kin, P.T. Liu, P.Y. Yang, C.F. Weng, and F.S. Huang, J. Appl. Phys. 103, 074108 (2008).

    Article  Google Scholar 

  3. M.C. Chen, T.C. Chang, S.Y. Huang, K.C. Chang, H.W. Li, S.C. Chen, J. Lu, and Y. Shi, Appl. Phys. Lett. 94, 162111 (2009).

    Article  Google Scholar 

  4. K.H. Chen, T.C. Chang, G.C. Chang, Y.E. Hsu, Y.C. Chen, and H.Q. Xu, Appl. Phys. A Mater. Sci. Process. 99, 291 (2010).

    Article  Google Scholar 

  5. P.C. Yang, T.C. Chang, S.C. Chen, Y.S. Lin, H.C. Huang, and D.S. Gan, Electrochem. Solid State Lett. 14, 93 (2011).

    Article  Google Scholar 

  6. Y.E. Syu, T.C. Chang, T.M. Tsai, Y.C. Hung, K.C. Chang, M.J. Tsai, M.J. Kao, and S.M. Sze, IEEE Electron Device Lett. 32, 545 (2011).

    Article  Google Scholar 

  7. L.W. Feng, C.Y. Chang, Y.F. Chang, W.R. Chen, S.Y. Wang, P.W. Chiang, and T.C. Chang, Appl. Phys. Lett. 96, 052111 (2010).

    Article  Google Scholar 

  8. L.W. Feng, C.Y. Chang, Y.F. Chang, T.C. Chang, S.Y. Wang, S.C. Chen, C.C. Lin, S.C. Chen, and P.W. Chiang, Appl. Phys. Lett. 96, 222108 (2010).

    Article  Google Scholar 

  9. K.H. Chen, Y.C. Chen, C.F. Yang, and T.C. Chang, J. Jpn. Appl. Phys. 46, 4197 (2007).

    Article  Google Scholar 

  10. F.W. Yang, K.H. Chen, C.M. Cheng, and F.Y. Su, Ceram. Int. 39, S729 (2013).

    Article  Google Scholar 

  11. K.C. Chang, T.M. Tsai, T.C. Chang, Y.E. Syu, and C.C. Wang, Appl. Phys. Lett. 99, 263501 (2011).

    Article  Google Scholar 

  12. K.C. Chang, T.M. Tsai, T.C. Chang, Y.E. Syu, K.H. Liao, S.L. Chuang, C.H. Li, D.S. Gan, and S.M. Sze, Electrochem. Solid-State Lett. 15, 3 (2012).

    Article  Google Scholar 

  13. T.M. Tsai, K.C. Chang, T.C. Chang, Y.E. Syu, K.H. Liao, B.H. Tseng, and S.M. Sze, Appl. Phys. Lett. 101, 112906 (2012).

    Article  Google Scholar 

  14. T.M. Tsai, K.C. Chang, T.C. Chang, Y.E. Syu, S.L. Chuang, G.W. Chang, G.R. Liu, M.C. Chen, H.C. Huang, S.K. Liu, Y.H. Tai, D.S. Gan, Y.L. Yang, T.F. Young, B.H. Tseng, K.H. Chen, M.J. Tsai, C. Sze, H. Sze, and S.M. Sze, IEEE Electron Device Lett. 33, 1696 (2012).

  15. T.M. Tsai, K.C. Chang, T.C. Chang, G.W. Chang, Y.E. Syu, Y.T. Su, G.R. Liu, K.H. Liao, M.C. Chen, H.C. Huang, Y.H. Tai, D.S. Gan, C. Ye, H. Wang, and S.M. Sze, IEEE Electron Device Lett. 33, 1693 (2012).

  16. A. Marcus, E.H. Keith, L. Michael, U.S. Patent No. 3,886,578. (1975)

  17. F.W. Yang, K.H. Chen, C.M. Cheng, and F.Y. Su, Ceram. Int. 39, S729 (2013).

    Article  Google Scholar 

  18. K.H. Chena and C.F. Yang, Ferroelectrics 381, 1 (2009).

    Article  Google Scholar 

  19. K.H. Chen, Y.C. Chen, Z.S. Chen, C.F. Yang, and T.C. Chang, Appl. Phys. A, Mater. Sci. Process. 89, 533 (2007).

  20. T.Y. Tseng and H. Nalwa, Handbook of Nanoceramics and Their Based Nano Devices, Vol. 175 (Los Angeles: American Scientific Publishers, 2009).

    Google Scholar 

  21. R. Ghosh, G.K. Paul, and D. Basak, Mater. Res. Bull. 40, 1905 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Council of the Republic of China (103-2633-E-272-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Huang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, KH., Cheng, CM., Kao, MC. et al. Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices. J. Electron. Mater. 46, 2147–2152 (2017). https://doi.org/10.1007/s11664-016-5148-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5148-3

Keywords

Navigation