Skip to main content
Log in

Evolution of Metallic Conductivity in Epitaxial ZnO Thin Films on Systematic Al Doping

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The metal-like behaviors and metal–semiconductor transition (MST) of highly conducting Zn1−x Al x O (x = 1 at.% to 10 at.%) thin films deposited by cosputtering on a-Al2O3 have been investigated. The temperature-dependent transport properties reveal that the Zn1−x Al x O films were highly degenerate. The MST temperature (T MST) varied from 190 K to 260 K with Al doping from x = 2 at.% to 10 at.%. A simple degenerate band model is used to explain the observed shift in the metal-like behaviors upon Al doping. An empirical approach is used to analyze the resistivity functional below TMST, taking into account the contributions from both the weak localization and Coulomb interactions in explaining the MST. Analysis by least-square fittings of measured data shows excellent agreement. The optical bandgap increases with carrier concentration as n 2/3Hall , which is interpreted as the Burstein–Moss shift for a nonparabolic effective mass. Such nonparabolicity is scrutinized by quantitative comparisons of the plasma edge values n optical versus the n Hall values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ü. ÖzgÜr, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 41301 (2005).

    Article  Google Scholar 

  2. D.S. Ginley and C. Bright, MRS Bull. 25, 15 (2000).

    Article  Google Scholar 

  3. B.G. Lewis and D.C. Paine, MRS Bull. 25, 22 (2000).

    Article  Google Scholar 

  4. E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, Thin Solid Films 487, 205 (2005).

    Article  Google Scholar 

  5. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).

    Article  Google Scholar 

  6. T. Minami, MRS Bull. 25, 38 (2000).

    Article  Google Scholar 

  7. T. Minami, Semicond. Sci. Technol. 20, S35 (2005).

    Article  Google Scholar 

  8. K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, and S. Niki, Thin Solid Films 431–432, 369 (2003).

    Article  Google Scholar 

  9. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, Appl. Phys. Lett. 91, 132117 (2007).

    Article  Google Scholar 

  10. L.-M. Wang, C.-Y. Wang, C.-R. Jheng, S.-J. Wu, C.-K. Sai, Y.-J. Lee, C.-Y. Chiang, and B.-Y. Shew, Appl. Phys. A 122, 731 (2016).

    Article  Google Scholar 

  11. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, Thin Solid Films 445, 263 (2003).

    Article  Google Scholar 

  12. O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda, and A.K. Pradhan, Appl. Phys. Lett. 90, 252108 (2007).

    Article  Google Scholar 

  13. V. Bhosle, A. Tiwari, and J. Narayan, Appl. Phys. Lett. 88, 32106 (2006).

    Article  Google Scholar 

  14. N.W. Schmidt, T.S. Totushek, W.A. Kimes, D.R. Callender, and J.R. Doyle, J. Appl. Phys. 94, 5514 (2003).

    Article  Google Scholar 

  15. K.C. Park, D.Y. Ma, and K.H. Kim, Thin Solid Films 305, 201 (1997).

    Article  Google Scholar 

  16. J.F. Chang and M.H. Hon, Thin Solid Films 386, 79 (2001).

    Article  Google Scholar 

  17. T. Tsuji and M. Hirohashi, Appl. Surf. Sci. 157, 47 (2000).

    Article  Google Scholar 

  18. D. Horwat and A. Billard, Thin Solid Films 515, 5444 (2007).

    Article  Google Scholar 

  19. K. Ellmer, J. Phys. D Appl. Phys. 33, R17 (2000).

    Article  Google Scholar 

  20. J. Narayan and B.C. Larson, J. Appl. Phys. 93, 278 (2003).

    Article  Google Scholar 

  21. S.N. Bai and T.Y. Tseng, Thin Solid Films 515, 872 (2006).

    Article  Google Scholar 

  22. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, and L.S. Wen, Appl. Surf. Sci. 158, 134 (2000).

    Article  Google Scholar 

  23. H. Hartnagel, Semiconducting Transparent Thin Films (Institute of Physics Pub., Bristol [England]; Philadelphia, PA, 1995).

  24. J. Singleton, Band Theory and Electronic Properties of Solids (Oxford: Oxford Press, 2001).

    Google Scholar 

  25. C. Kittel, Introduction to Solid State Physics, 8th ed. (Hoboken: John Wiley & Sons, 2005).

    Google Scholar 

  26. W.N. Lawless and T.K. Gupta, J. Appl. Phys. 60, 607 (1986).

    Article  Google Scholar 

  27. R.A. Robie, H.T. Haselton, and B.S. Hemingway, J. Chem. Thermodyn. 21, 743 (1989).

    Article  Google Scholar 

  28. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, and T. Hasegawa, Appl. Phys. Lett. 86, 252101 (2005).

    Article  Google Scholar 

  29. T.F. Rosenbaum, K. Andres, G.A. Thomas, and R.N. Bhatt, Phys. Rev. Lett. 45, 1723 (1980).

    Article  Google Scholar 

  30. A.L. Efros and M. Pollak, eds., Electron-electron Interactions in Disordered Systems (Amsterdam: North-Holland, 1985).

    Google Scholar 

  31. P.A. Lee and T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  Google Scholar 

  32. J.I. Pankove and D.A. Kiewit, J. Electrochem. Soc. 119, 156C (1972).

    Article  Google Scholar 

  33. T.J. Coutts, D.L. Young, and X. Li, MRS Bull. 25, 58 (2000).

    Article  Google Scholar 

  34. B.E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg, and C.G. Granqvist, Phys. Rev. B 37, 10244 (1988).

    Article  Google Scholar 

  35. T. Pisarkiewicz, K. Zakrzewska, and E. Leja, Thin Solid Films 174, 217 (1989).

    Article  Google Scholar 

  36. D. Mergel and Z. Qiao, J. Phys. D Appl. Phys. 35, 794 (2002).

    Article  Google Scholar 

  37. Z. Qiao, C. Agashe, and D. Mergel, Thin Solid Films 496, 520 (2006).

    Article  Google Scholar 

  38. M. Theiss, SCOUT (2016). http://www.mtheiss.com/?c=1&content=scout. Accessed 10 Oct 2016.

  39. S. Brehme, F. Fenske, W. Fuhs, E. Nebauer, M. Poschenrieder, B. Selle, and I. Sieber, Thin Solid Films 342, 167 (1999).

    Article  Google Scholar 

  40. F. Ruske, A. Pflug, V. Sittinger, B. Szyszka, D. Greiner, and B. Rech, Thin Solid Films 518, 1289 (2009).

    Article  Google Scholar 

  41. A.V. Singh, R.M. Mehra, A. Yoshida, and A. Wakahara, J. Appl. Phys. 95, 3640 (2004).

    Article  Google Scholar 

  42. K. Ellmer, J. Phys. D Appl. Phys. 34, 3097 (2001).

    Article  Google Scholar 

  43. O. Lozano, Q.Y. Chen, P.V. Wadekar, H.W. Seo, P.V. Chinta, L.H. Chu, L.W. Tu, I. Lo, S.W. Yeh, N.J. Ho, F.C. Chuang, D.J. Jang, D. Wijesundera, and W.-K. Chu, Sol. Mat. Sol. Cells 113, 171 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and Technology (MOST), Taiwan, ROC, under Grant Nos. 103-2112-M-110-003, 104-2221-E-110-063, and 105-2221-E-110-042 for P.V.W., O.L., and L.W.T., O.L. is now with Tecnológico de Monterrey, Mexico. Partial support by the State of Texas through the Texas Centre for Superconductivity at University of Houston is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Y. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinta, P.V., Lozano, O., Wadekar, P.V. et al. Evolution of Metallic Conductivity in Epitaxial ZnO Thin Films on Systematic Al Doping. J. Electron. Mater. 46, 2030–2039 (2017). https://doi.org/10.1007/s11664-016-5117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5117-x

Keywords

Navigation