Skip to main content
Log in

Interfacial Microstructure Evolution and Shear Behavior of Au-Sn/Ni-xCu Joints at 350°C

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Interfacial reaction and shear behavior of the joints between Au-29Sn (at.%) solder and Ni-xCu (x = 20 at.%, 40 at.%, 60 at.%, and 80 at.%) substrate alloys soldered at 350°C for various durations were investigated in this study. The results show that α(Au) is the common reaction product at the solder/substrate interfaces after a short-time reaction regardless of Cu content. As soldering goes on, another new Ni3Sn2 layer forms at the interface company with ordering of the α(Au) phase, AuCu I/Ni3Sn2 bi-layers formed at the Au-Sn/Ni-20Cu interface, or with AuCu III/Ni3Sn2 bi-layers at the Au-Sn/Ni-40Cu interface. If the content of Cu in the substrate is higher than 40 at.%, periodic layered structure and discontinuous Ni3Sn2 layers appear. In the couple of Au-Sn/Ni-60Cu, AuCu I + AuCu III/Ni3Sn2/α(Au) can be observed while AuCu3/Ni3Sn2/α(Au) forms in the couple of Au-Sn/Ni-80Cu. Shear fracture always occurs in the region near the Ni-20Cu substrate in Au-Sn/Ni-20Cu joints, whereas it appears in the reaction layer for the joint of higher Cu content. The shear strength of Au-Sn/Ni-60Cu and Au-Sn/Ni-80Cu joints achieves about 55 MPa as α(Au) phase forms but decreases remarkably due to pore formation after soldering for a long duration. Whereas, the shear strength of Au-Sn/Ni-40Cu joints can reach 62 MPa as the α(Au) phase forms at an early stage, and maintains above 52 MPa even soldered for a long duration because of the adequate thick α(Au) and AuCu III layer adjacent to substrate provides good bonding. The reason why the soldering joint of Au-Sn/Ni-40Cu possesses higher strength and a better stability exists is that high Ni concentration in α(Au) and the continuous Ni3Sn2 layer inhibit formation of Kirkendall pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Liu, Y. Wang, Y. Ma, Q. Yu, and Y. Huang, Mater. Sci. Eng., A 651, 626 (2016).

    Article  Google Scholar 

  2. W. Tang, A. He, Q. Liu, and D.G. Ivey, Acta Mater. 56, 5818 (2008).

    Article  Google Scholar 

  3. J.W. Ronnie Teo, G.Y. Li, M.S. Ling, Z.F. Wang, and X.Q. Shi, Thin Solid Films 515, 4340 (2007).

    Article  Google Scholar 

  4. V. Chidambaram, J. Hattel, and J. Hald, Mater. Design 31, 4638 (2010).

    Article  Google Scholar 

  5. J.-W. Yoon, H.-S. Chun, and S.-B. Jung, Mater. Sci. Eng., A 473, 119 (2008).

    Article  Google Scholar 

  6. H.-K. Cheng, Y.-J. Lin, C.-M. Chen, K.-C. Liu, Y.-L. Wang, and T.-F. Liu, Metal. Mater. Trans. A 47, 3971 (2016).

    Article  Google Scholar 

  7. H. Flandorfer, U. Saeed, C. Luef, A. Sabbar, and H. Ipser, Thermochim. Acta 459, 34 (2007).

    Article  Google Scholar 

  8. W. Villanueva, W.J. Boettinger, G.B. McFadden, and J.A. Warren, Acta Mater. 60, 3799 (2012).

    Article  Google Scholar 

  9. J.-W. Yoon, S.-W. Kim, and S.-B. Jung, J. Alloys Compd. 392, 247 (2005).

    Article  Google Scholar 

  10. J.-W. Yoon, H.-S. Chun, B.-I. Noh, J.-M. Koo, J.-W. Kim, H.-J. Lee, and S.-B. Jung, Microelectro. Reliab. 48, 1857 (2008).

    Article  Google Scholar 

  11. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng., R 49, 1 (2005).

    Article  Google Scholar 

  12. H.G. Song, J.W. Morris, and M.T. Mccormack, J. Electr. Mater. 29, 1038 (2000).

    Article  Google Scholar 

  13. H.-M. Chung, C.-M. Chen, C.-P. Lin, and C.-J. Chen, J. Alloys Compds. 485, 219 (2009).

    Article  Google Scholar 

  14. H. Etschmaier, J. Novák, H. Eder, and P. Hadley, Intermetallics 20, 87 (2012).

    Article  Google Scholar 

  15. C.H. Lee, Y.M. Wong, C. Doherty, K.L. Tai, E. Lane, D.D. Bacon, F. Baiocchi, and A. Katz, J. Appl. Phys. 72, 3808 (1992).

    Article  Google Scholar 

  16. J.-W. Yoon, H.-S. Chun, J.-M. Koo, H.-J. Lee, and S.-B. Jung, Scripta Mater. 56, 661 (2007).

    Article  Google Scholar 

  17. X.W. Zhu, R.C. Wang, C.Q. Peng, X.F. Wei, and J. Peng, J. Mater. Sci. Mater. Electr. 25, 742 (2014).

    Article  Google Scholar 

  18. X.F. Wei, Y.K. Zhang, R.C. Wang, and Y. Feng, Microelectro. Reliab. 5, 748 (2013).

    Article  Google Scholar 

  19. Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, and C.R. Kao, J. Alloys Compd. 671, 340 (2016).

    Article  Google Scholar 

  20. V. Vuorinen, T. Laurila, T. Mattila, E. Heikinheimo, and J.K. Kivilahti, J. Electr. Mater. 36, 1355 (2007).

    Article  Google Scholar 

  21. A. Wierzbicka-Miernik, K. Miernik, J. Wojewoda-Budka, K. Szyszkiewicz, R. Filipek, L. Litynska-Dobrzynska, A. Kodentsov, and P. Zieba, Mater. Chem. Phys. 142, 682 (2013).

    Article  Google Scholar 

  22. T. Maeshima, H. Ikehata, K. Terui, and Y. Sakamoto, Mater. Des. 103, 106 (2016).

    Google Scholar 

  23. H.-F. Lin, Y.-C. Chang, and C.-C. Chen, J. Electr. Mater. 43, 3333 (2014).

    Article  Google Scholar 

  24. K.C. Huang, F.S. Shieu, T.S. Huang, C.T. Lu, C.W. Chen, H.W. Tseng, S.L. Cheng, and C.Y. Liu, J. Electr. Mater. 39, 2403 (2010).

    Article  Google Scholar 

  25. H.Q. Dong, V. Vuorinen, T. Laurila, and M. Paulasto-Kröckel, CALPHAD 43, 61 (2013).

    Article  Google Scholar 

  26. H. Yu, V. Vuorinen, and J.K. Kivilahti, J. Electr. Mater. 36, 136 (2007).

    Article  Google Scholar 

  27. H.Q. Dong, V. Vuorinen, X.M. Tao, T. Laurila, and M. Paulasto-Kröckel, J. Alloys Compds. 588, 449 (2014).

    Article  Google Scholar 

  28. W.M. Chen, S.C. Yang, M.H. Tsai, and C.R. Kao, Scripta Mater. 63, 47 (2010).

    Article  Google Scholar 

  29. C.C. Chen and Y.T. Chen, J. Alloys Compd. 545, 28 (2012).

    Article  Google Scholar 

  30. C.R. Kao and Y.A. Chang, Acta Metal. 41, 3463 (1993).

    Article  Google Scholar 

  31. J. Wang, H.S. Liu, L.B. Liu, and Z.P. Jin, CALPHAD 32, 94 (2008).

    Article  Google Scholar 

  32. J. Wang, L.B. Liu, H.S. Liu, and Z.P. Jin, CALPHAD 31, 249 (2007).

    Article  Google Scholar 

  33. Y. Liu, L. Zhang, and D. Yu, J. Phase. Equilib. Diff. 30, 136 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge Dr. Hongqun Dong at Aalto University for providing thermodynamic data of the Au-Cu-Sn ternary system. We are also indebted to Dr. Xiaofeng Wei and Dr. Naiguang Wang for academic discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Wang, R.C., Wang, M. et al. Interfacial Microstructure Evolution and Shear Behavior of Au-Sn/Ni-xCu Joints at 350°C. J. Electron. Mater. 46, 2021–2029 (2017). https://doi.org/10.1007/s11664-016-5094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5094-0

Keywords

Navigation