Skip to main content
Log in

Trilayer TMDC Heterostructures for MOSFETs and Nanobiosensors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Two dimensional materials such as transition metal dichalcogenides (TMDC) and their bi-layer/tri-layer heterostructures have become the focus of intense research and investigation in recent years due to their promising applications in electronics and optoelectronics. In this work, we have explored device level performance of trilayer TMDC heterostructure (MoS2/MX2/MoS2; M = Mo or, W and X = S or, Se) metal oxide semiconductor field effect transistors (MOSFETs) in the quantum ballistic regime. Our simulation shows that device ‘on’ current can be improved by inserting a WS2 monolayer between two MoS2 monolayers. Application of biaxial tensile strain reveals a reduction in drain current which can be attributed to the lowering of carrier effective mass with increased tensile strain. In addition, it is found that gate underlap geometry improves electrostatic device performance by improving sub-threshold swing. However, increase in channel resistance reduces drain current. Besides exploring the prospect of these materials in device performance, novel trilayer TMDC heterostructure double gate field effect transistors (FETs) are proposed for sensing Nano biomolecules as well as for pH sensing. Bottom gate operation ensures these FETs operating beyond Nernst limit of 59 mV/pH. Simulation results found in this work reveal that scaling of bottom gate oxide results in better sensitivity while top oxide scaling exhibits an opposite trend. It is also found that, for identical operating conditions, proposed TMDC FET pH sensors show super-Nernst sensitivity indicating these materials as potential candidates in implementing such sensor. Besides pH sensing, all these materials show high sensitivity in the sub-threshold region as a channel material in nanobiosensor while MoS2/WS2/MoS2 FET shows the least sensitivity among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutirrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger, ACS Nano 7, 2898 (2013).

    Article  Google Scholar 

  2. C.N.R. Rao, K. Gopalakrishnan, U. Maitra, and A.C.S. Appl, Mater. Interfaces 7, 7809 (2015).

    Article  Google Scholar 

  3. H. Peelaers and C.G. Van de Walle, Phys. Rev. B 86, 241401 (2012).

    Article  Google Scholar 

  4. E.S. Kadantsev and P. Hawrylak, Solid State Commun. 152, 909 (2012).

    Article  Google Scholar 

  5. H. Terrones, F. López-Urías, and M. Terrones, Sci. Rep. 3, 1549 (2013).

    Article  Google Scholar 

  6. N. Lu, H. Guo, L. Li, J. Dai, L. Wang, W.-N. Mei, X. Wu, and X.C. Zeng, Nanoscale 6, 2879 (2014).

    Article  Google Scholar 

  7. J. He, K. Hummer, and C. Franchini, Phys. Rev. B 89, 075409 (2014).

    Article  Google Scholar 

  8. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Article  Google Scholar 

  9. Y. Yoon, K. Ganapathi, and S. Salahuddin, Nano Lett. 11, 3768 (2011).

    Article  Google Scholar 

  10. S. Das, H.Y. Chen, A.V. Penumatcha, and J. Appenzeller, Nano Lett. 13, 100 (2013).

    Article  Google Scholar 

  11. W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, Nano Lett. 13, 1983 (2013).

    Article  Google Scholar 

  12. H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).

    Article  Google Scholar 

  13. W. Cao, J. Kang, W. Liu, and K. Banerjee, IEEE Trans. Electron Devices 61, 4282 (2014).

    Article  Google Scholar 

  14. W. Cao, J. Kang, D. Sarkar, W. Liu, and K. Banerjee, IEEE Trans. Electron Devices 62, 3459 (2015).

    Article  Google Scholar 

  15. S.V. Suryavanshi and E. Pop, in 2015 73rd Annual Device Research Conference (DRC) (2015), vol. 569, p. 9.

  16. G.S. Duesberg, Nat. Mater. 13, 1075 (2014).

    Article  Google Scholar 

  17. C. Huang, S. Wu, A.M. Sanchez, J.J.P. Peters, R. Beanland, J.S. Ross, P. Rivera, W. Yao, D.H. Cobden, and X. Xu, Nat. Mater. 13, 1 (2014).

    Article  Google Scholar 

  18. M.O. Li, D. Esseni, J.J. Nahas, D. Jena, and H.G. Xing, IEEE J. Electron Devices Soc. 3, 200 (2015).

    Article  Google Scholar 

  19. T. Niu and A. Li, Prog. Surf. Sci. 90, 21 (2015).

    Article  Google Scholar 

  20. X. Zhang, F. Meng, J.R. Christianson, C. Arroyo-Torres, M.A. Lukowski, D. Liang, J.R. Schmidt, and S. Jin, Nano Lett. 14, 3047 (2014).

    Article  Google Scholar 

  21. S. Wang, X. Wang, and J.H. Warner, ACS Nano 9, 5246 (2015).

    Article  Google Scholar 

  22. N. Lu, H. Guo, L. Wang, X. Wu, and X.C. Zeng, Nanoscale 6, 4566 (2014).

    Article  Google Scholar 

  23. J. Go, P.R. Nair, B. Reddy, B. Dorvel, R. Bashir, and M.A. Alam, Tech. Dig. Int. Electron Devices Meet. IEDM, 8.7.1 (2010).

  24. M.-J. Spijkman, J.J. Brondijk, T.C.T. Geuns, E.C.P. Smits, T. Cramer, F. Zerbetto, P. Stoliar, F. Biscarini, P.W.M. Blom, and D.M. de Leeuw, Adv. Funct. Mater. 20, 898 (2010).

    Article  Google Scholar 

  25. H. Nam, B.R. Oh, P. Chen, J.S. Yoon, S. Wi, M. Chen, K. Kurabayashi, and X. Liang, Appl. Phys. Lett. 107, 1 (2015).

    Google Scholar 

  26. J. Lee, P. Dak, Y. Lee, H. Park, W. Choi, M. Alam, and S. Kim, Sci. Rep. 4, 7352 (2014).

  27. D. Sarkar, W. Liu, X. Xie, A.C. Anselmo, S. Mitragotri, and K. Banerjee, ACS Nano 8, 3992 (2014).

    Article  Google Scholar 

  28. H. Nam, B.-R. Oh, M. Chen, S. Wi, D. Li, K. Kurabayashi, and X. Liang, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 33, 06FG01 (2015).

  29. Y. Liu, X. Dong, and P. Chen, Chem. Soc. Rev. 41, 2283 (2012).

    Article  Google Scholar 

  30. W. Wu, D. De, S.C. Chang, Y. Wang, H. Peng, J. Bao, and S.S. Pei, Appl. Phys. Lett. 102, 1 (2013).

    Google Scholar 

  31. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  32. Z. Ren, R. Venugopal, S. Goasguen, S. Datta, and M.S. Lundstrom, IEEE Trans. Electron Devices 50, 1914 673 (2003).

    Article  Google Scholar 

  33. O. Kurniawan, P. Bai, and E. Li, J. Phys. D Appl. Phys. 42, 105109 (2009).

    Article  Google Scholar 

  34. C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).

    Article  Google Scholar 

  35. H. Monkhors and J. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  36. N. Ma and D. Jena, Appl. Phys. Lett. 102, (2013).

  37. S. Birner, C. Uhl, M. Bayer, and P. Vogl, J. Phys: Conf. Ser. 107, 012002 (2008).

    Google Scholar 

  38. D. Jiménez, Appl. Phys. Lett. 101, 243501 (2012).

  39. Y. Liu, Ph.D. Thesis, Purdue University (2012).

  40. J. Go, P. R. Nair, and M. A. Alam, J. Appl. Phys. 112, 034516 (2012).

  41. B. Khamaisi, O. Vaknin, O. Shaya, and N. Ashkenasy, ACS Nano 4, 4601 (2010).

    Article  Google Scholar 

  42. X.P.A. Gao, G. Zheng, and C.M. Lieber, Nano Lett. 10, 547 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanak Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, K., Shadman, A., Rahman, E. et al. Trilayer TMDC Heterostructures for MOSFETs and Nanobiosensors. J. Electron. Mater. 46, 1248–1260 (2017). https://doi.org/10.1007/s11664-016-5078-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5078-0

Keywords

Navigation