Skip to main content
Log in

Phase Evolution When Sn Reacts with Cu-Ti Compounds at 823 K

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, Cu/Ti diffusion couples annealed at 1023 K for 1000 h were annealed with molten Sn at 823 K for 15–480 min. With the addition of Ti, the consumption speed of Cu is greatly enhanced. At 823 K, a Cu plate with a thickness of about 3 mm dissolved from a solute into Sn in less than 15 min. Cu-Ti binary compounds still have different consumption speeds in molten Sn. The grown-out Cu-Ti binary compounds show great anisotropism in this work, and there are quick diffusion paths vertical to the Cu-Ti interface that form in them. With the progressing of annealing, different tri-junctions, which mean correlative three-phase regions in the isothermal section, appear in the samples sequentially at 823 K. After annealing at 823 K for varying times from 15 min to 480 min, the morphologies of diffusion zones are illustrated with diffusion paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Kang and A.K. Sarkhel, J. Electron. Mater. 23, 701 (1994).

    Article  Google Scholar 

  2. S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, and K.J. Puttlitz, IEEE Electron. Compon. Technol. Conf. 53, 64 (2003).

  3. E.S. Freitas, W.R. Osório, J.E. Spinelli, and A. Garcia, Microelectron. Reliab. 54, 1392 (2014).

    Article  Google Scholar 

  4. L.F. Li, Y.K. Cheng, G.L. Xu, E.Z. Wang, Z.H. Zhang, and H. Wang, Mater. Des. 64, 15 (2014).

    Article  Google Scholar 

  5. X. Hu, K. Li, and Z. Min, J. Alloys Comp. 566, 239 (2013).

    Article  Google Scholar 

  6. W.R. Osório, D.R. Leiva, L.C. Peixoto, L.R. Garcia, and A. Garcia, J. Alloys Comp. 562, 194 (2013).

    Article  Google Scholar 

  7. C.E. Ho, W.Z. Hsieh, C.S. Liu, and C.H. Yang, Thin Solid Films 572, 238 (2014).

    Article  Google Scholar 

  8. H. Nishikawa and N. Iwata, J. Mater. Process. Technol. 215, 6 (2015).

    Article  Google Scholar 

  9. A. Fawzy, S.A. Fayek, M. Sobhy, E. Nassr, M.M. Mousa, and G. Saad, Mater. Sci. Eng. A 603, 1 (2014).

    Article  Google Scholar 

  10. F. Frongia, M. Pilloni, A. Scano, A. Ardu, C. Cannas, A. Musinu, G. Borzone, S. Delsante, R. Novakovic, and G. Ennas, J. Alloys Comp. 623, 7 (2015).

    Article  Google Scholar 

  11. W.-R. Myung, Y.L. Kim, and S.-B. Jung, J. Alloys Comp. 615, S411 (2014).

    Article  Google Scholar 

  12. T. Gancarz, J. Pstrus, W. Gasior, and H. Henein, J. Electron. Mater. 42, 288 (2013).

    Article  Google Scholar 

  13. R.M. Shalaby, Mater. Sci. Eng. A 560, 86 (2013).

    Article  Google Scholar 

  14. G. Montesperelli, M. Rapone, F. Nanni, P. Travaglia, P. Riani, R. Marazza, and G. Gusmano, Mater. Corros. 59, 662 (2008).

    Article  Google Scholar 

  15. M. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, and D.W. Henderson, Appl. Phys. Lett. 92, 211 (2008).

    Google Scholar 

  16. S.K. Seo, S.K. Kang, D.Y. Shih, and H.M. Lee, Microelectron. Reliab. 49, 288 (2009).

    Article  Google Scholar 

  17. S.K. Seo, S.K. Kang, D.Y. Shih, and H.M. Lee, J. Electron. Mater. 38, 257 (2009).

    Article  Google Scholar 

  18. S.K. Seo, S.K. Kang, M.G. Cho, and H.M. Lee, JOM 62, 22 (2010).

    Article  Google Scholar 

  19. I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra, and O. Unal, J. Electron. Mater. 30, 1050 (2001).

    Article  Google Scholar 

  20. M.G. Cho, S.K. Kang, D.Y. Shih, and H.M. Lee, J. Electron. Mater. 36, 1501 (2007).

    Article  Google Scholar 

  21. Y.W. Wang, Y.W. Lin, C.T. Tu, and C.R. Kao, J. Alloys Compd. 478, 121 (2009).

    Article  Google Scholar 

  22. S.C. Yang, C.C. Chang, M.H. Tsai, and C.R. Kao, J. Alloys Compd. 499, 149 (2010).

    Article  Google Scholar 

  23. S.C. Yang, Y.W. Wang, C.C. Chang, and C.R. Kao, J. Electron. Mater. 37, 1591 (2008).

    Article  Google Scholar 

  24. Y.W. Wang, Y.W. Lin, and C.R. Kao, J. Alloys Compd. 493, 233 (2010).

    Article  Google Scholar 

  25. W. Liu, P. Bachorik, and N.C. Lee, IEEE Electron. Compon. Technol. Conf. 58, 452 (2008).

  26. W.M. Chen, S.K. Kang, and C.R. Kao, J. Alloys Compd. 520, 244 (2012).

    Article  Google Scholar 

  27. F.J.J. van Loo, Solid State Chem. 20, 47 (1990).

    Article  Google Scholar 

  28. B.J. Lee, N.M. Hwang, and H.M. Lee, Acta Mater. 45, 1867 (1997).

    Article  Google Scholar 

  29. Y.Q. Hu, Y.P. Zhao, and T.X. Yu, Mater. Sci. Eng. A 483, 611 (2008).

    Article  Google Scholar 

  30. S. Hamar-Thibault and C.H. Allibert, J. Alloys Compds. 317–318, 363 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G.J., Li, D.J., Cai, A.H. et al. Phase Evolution When Sn Reacts with Cu-Ti Compounds at 823 K. J. Electron. Mater. 45, 5996–6004 (2016). https://doi.org/10.1007/s11664-016-4777-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4777-x

Keywords

Navigation