Skip to main content

Advertisement

Log in

Electrical and Mechanical Properties of the Dielectric Capacitor Film Based on Polyvinylidene Fluoride and Aromatic Polythiourea

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To obtain the flexible dielectric material suitable for mass produced supercapacitor, blend films based on polyvinylidene fluoride (PVDF) and aromatic polythiourea (ArPTU) were prepared by solution casting. We found that the PVDF/ArPTU blend film is a good energy storage material for capacitors with high breakdown strength and low loss at high filed. The breakdown field of PVDF/ArPTU (90/10) film is more than 700 MV/m, and the maximum released energy density is up to 11 J/cm3 with discharging efficiency above 80%. We also proved that the mechanical property of blend films is much better than that of pure ArPTU film, and the toughness and softness are close to the level of PVDF film. The blend film based on PVDF and ArPTU is a flexible dielectric material in the manufacture of supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q.M. Zhang, Science 313 (2006).

  2. D.H. Fritts, J Electrochem. Soc. 44, 2233 (1997).

    Article  Google Scholar 

  3. Q. Chen, Y. Shen, S. Zhang, and Q.M. Zhang, Annu. Rev. Mater. Res. 45, 433 (2015).

    Article  Google Scholar 

  4. Y. Bai, Z.Y. Cheng, V. Bharti, H.S. Xu, and Q.M. Zhang, Appl. Phys. Lett. 76, 3804 (2000).

    Article  Google Scholar 

  5. A. O’Halloran, F. O’Malley, and P. McHugh, J Appl. Phys. 104, 071101 (2008).

    Article  Google Scholar 

  6. V. Ranjan, L. Yu, M. Nardelli, and J. Bernholc, Phys. Rev. Lett. 99, 047801 (2007).

    Article  Google Scholar 

  7. K.S. Deepa, S. Kumari Nisha, P. Parameswaran, M.T. Sebastian, and J. James, Appl. Phys. Lett. 94, 142902 (2009).

  8. V.S. Ijeri, J.R. Nair, C. Gerbaldi, R.M. Bongiovanni, and N. Penazzi, ACS Appl. Mater. Inter. 2, 3192 (2010).

    Article  Google Scholar 

  9. M.-A. Kakimoto, A. Takahashi, T.-A. Tsurumi, J. Hao, L. Li, R. Kikuchi, T. Miwa, T. Oono, and S. Yamada, Mater. Sci. Eng. B 132, 74 (2006).

    Article  Google Scholar 

  10. S. El Bouazzaoui, A. Droussi, M.E. Achour, and C. Brosseau, J Appl. Phys. 106, 104107 (2009).

    Article  Google Scholar 

  11. V. Myroshnychenko and C. Brosseau, J. Appl. Phys. 103, 084112 (2008).

    Article  Google Scholar 

  12. J.S. de C. Campos, A.A. Ribeiro, and C.X. Cardoso, Mater. Sci. Eng. B 136, 123 (2007).

  13. C.H. Tung, K.L. Pey, L.J. Tang, M.K. Radhakrishnan, W.H. Lin, F. Palumbo, and S. Lombardo, Appl. Phys. Lett. 83, 2223 (2003).

    Article  Google Scholar 

  14. L. Jiang, W. Li, J. Zhu, X. Huo, L. Luo, and Y. Zhu, Appl. Phys. Lett. 106, 052901 (2015).

    Article  Google Scholar 

  15. S. Tan, X. Hu, S. Ding, Z. Zhang, H. Li, and L. Yang, J. Mater. Chem. A 1, 10353 (2013).

    Google Scholar 

  16. V. Ranjan, M.B. Nardelli, and J. Bernholc, Phys. Rev. Lett. 108, 087802 (2012).

    Article  Google Scholar 

  17. L. Nyholm, G. Nystrom, A. Mihranyan, and M. Stromme, Adv. Mater. 23, 3751 (2011).

    Google Scholar 

  18. L.J. Gorny, S.G. Lu, S. Liu, and M. Lin, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 441 (2013).

    Article  Google Scholar 

  19. Z. Zhang and T.C.M. Chung, Macromolecules 40, 783 (2007).

    Article  Google Scholar 

  20. Q. Chen, Y. Wang, X. Zhou, Q.M. Zhang, and S. Zhang, Appl. Phys. Lett. 92, 142909 (2008).

    Article  Google Scholar 

  21. S. Wu, W. Li, M. Lin, Q. Burlingame, Q. Chen, A. Payzant, K. Xiao, and Q.M. Zhang, Adv. Mater. 25, 1734 (2013).

    Article  Google Scholar 

  22. Q. Burlingame, S. Wu, M. Lin, and Q.M. Zhang, Adv. Energy Mater. 3, 1051 (2013).

    Article  Google Scholar 

  23. W. Li, L. Jiang, X. Zhang, Y. Shen, and C.W. Nan, J. Mater. Chem. A 2, 15803 (2014).

    Google Scholar 

  24. K. Wu, Y. Wang, Y. Cheng, L.A. Dissado, and X. Liu, J. Appl. Phys. 107, 064107 (2010).

    Google Scholar 

  25. X. Li, C.H. Tung, and K.L. Pey, Appl. Phys. Lett. 93, 072903 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Grant No. 11574168) and Natural Science Foundation of Zhejiang Province (Grant No. LY14E030001). This work was also sponsored by K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Fu, Q., Li, L. et al. Electrical and Mechanical Properties of the Dielectric Capacitor Film Based on Polyvinylidene Fluoride and Aromatic Polythiourea. J. Electron. Mater. 45, 5152–5157 (2016). https://doi.org/10.1007/s11664-016-4747-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4747-3

Keywords

Navigation