Skip to main content
Log in

Preparation and Characterization of Bi2Te3/Graphite/Polythiophene Thermoelectric Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The Bi2Te3/graphite/polythiophene composites were prepared by solution mixing, mechanical ball milling, cold pressing and spark plasma sintering (SPS) in order to utilize and integrate the high Seebeck coefficient of Bi2Te3, high electrical conductivity of graphite (G) and low thermal conductivity of polythiophene (PTh). The structures and properties of the composites were characterized by scanning electron microscope, thermo gravimetric analyzer, x-ray diffraction and ULVAC ZEM-2 Seebeck coefficient measurement. The results showed that the related components were uniformly dispersed in the composites, and the electrical conductivity of the composites increased significantly with increasing G content. A small addition of Bi2Te3 to the matrix contributed to an increase in Seebeck coefficient and the thermal conductivity of the composites stayed at a low level owing to the low thermal conductivity of PTh. These composites prepared by SPS show an increase in Seebeck coefficient but a decrease in electrical conductivity as compared to corresponding composites prepared by cold pressing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ming, Q. Feng, and Z.Q. Lin, Energy Environ. Sci. 6, 1352 (2013).

    Article  Google Scholar 

  2. C. Han, Z. Li, and S.X. Dou, Chin. Sci. Bull. 59, 2073 (2014).

    Article  Google Scholar 

  3. A. Date, A. Date, C. Dixon, and A. Akbarzadeh, Renew. Sust. Energy Rev. 33, 371 (2014).

    Article  Google Scholar 

  4. M. Hamid Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M. Haji Hassan, M.B. Ali Bashir, and M. Mohamad, Renew. Sust. Energy Rev. 30, 337 (2014).

    Article  Google Scholar 

  5. D.L. Zhao and G. Tan, Appl. Therm. Eng. 66, 15 (2014).

    Article  Google Scholar 

  6. M. Liebscher, T. Gärtner, L. Tzounis, M. Mičušík, P. Pötschke, M. Stamm, G. Heinrich, and B. Voit, Compos. Sci. Technol. 101, 133 (2014).

    Article  Google Scholar 

  7. J. Hyun, K. Myeongjin, and K. Jooheon, J. Appl. Polym. Sci. (2015). doi:10.1002/app.42107.

    Google Scholar 

  8. H. Ju, M. Kim, and J. Kim, J. Mater. Sci. Mater. Electron. 26, 2544 (2015).

    Article  Google Scholar 

  9. M. He, J. Ge, Z.Q. Lin, X.H. Feng, X.W. Wang, H.B. Lu, Y.L. Yang, and F. Qiu, Energy Environ. Sci. 5, 8351 (2012).

    Article  Google Scholar 

  10. N. Dubey and M. Leclerc, J. Polym. Sci. Polym. Phys. 49, 467 (2011).

    Article  Google Scholar 

  11. W.Q. Ao, L. Wang, J.Q. Li, F. Pan, and C.N. Wu, J. Electron. Mater. 40, 2027 (2011).

    Article  Google Scholar 

  12. Y.J. Hu, H. Shi, H.J. Song, C.C. Liu, J.Q. Xu, L. Zhang, and Q.L. Jiang, Synth. Met. 181, 23 (2013).

    Article  Google Scholar 

  13. D.H. Kim and T. Mitani, J. Alloy. Compd. 399, 14 (2005).

    Article  Google Scholar 

  14. H. Pang, Y.Y. Piao, Y.Q. Tan, G.Y. Jiang, J.H. Wang, and Z.M. Li, Mater. Lett. 107, 150 (2013).

    Article  Google Scholar 

  15. J.J. Li, L. Wang, X.L. Jia, X.Z. Xiang, C.L. Ho, W.Y. Wong, and H. Li, RSC Adv. 4, 62096 (2014).

    Article  Google Scholar 

  16. S.A. Mansour, M. Hussein, and A.H. Moharram, Adv Polym Technol 33, 1 (2014).

    Article  Google Scholar 

  17. L. Wang, X.L. Jia, D.G. Wang, G.M. Zhu, and J.Q. Li, Synth. Met. 181, 79 (2013).

    Article  Google Scholar 

  18. J.J. Li, C.H. Lai, X.Z. Xiang, and L. Wang, J. Mater. Chem. C 3, 2693 (2015).

    Article  Google Scholar 

  19. C.H. Lai, J.J. Li, X.Z. Xiang, L. Wang, and D.Q. Liu, Polym. Compos. (2016). doi:10.1002/pc.23913.

    Google Scholar 

  20. M.R. Karim, C.J. Lee, and M.S. Lee, J. Polym. Sci. Chem. 44, 5283 (2006).

    Article  Google Scholar 

  21. J. Li, C. Lai, X. Jia, L. Wang, X. Xiang, C.-L. Ho, H. Li, and W.-Y. Wong, Compos. Part B 77, 248 (2015).

    Article  Google Scholar 

  22. Y. Du, K.F. Cai, S.Z. Shen, B.J. An, Z. Qin, and P.S. Casey, J. Mater. Sci. Mater. Electron 23, 870 (2012).

    Article  Google Scholar 

  23. K.L. Xu, G.M. Chen, and D. Qiu, J. Mater. Chem. A 1, 12395 (2013).

    Article  Google Scholar 

  24. B.Y. Lu, C.C. Liu, S. Lu, J.K. Xu, F.X. Jiang, Y.Z. Li, and Z. Zhang, Chin. Phys. Lett. 27, 1 (2010).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Nature Science Foundation of China (Nos. 51003060 and 51171117) and the Shenzhen Sci & Tech Research Grant (JC20110 42100070A, ZYC201105 170225A) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengjun Pan or Lei Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, C., Li, J., Pan, C. et al. Preparation and Characterization of Bi2Te3/Graphite/Polythiophene Thermoelectric Composites. J. Electron. Mater. 45, 5246–5252 (2016). https://doi.org/10.1007/s11664-016-4663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4663-6

Keywords

Navigation