Skip to main content
Log in

Characterization of Electrospun Nanofibrous Scaffolds for Nanobiomedical Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electrospinning method is employed in the production of porous fiber scaffolds, and the usage of electrospun scaffolds especially as drug carrier and bone reconstructive material such as implants is promising for future applications in tissue engineering. The number of publications has grown very rapidly in this field through the fabrication of complex scaffolds, novel approaches in nanotechnology, and improvements of imaging methods. Hence, characterization of these materials has also grown significantly important for getting satisfied and accurate results. This advantageous and versatile method is ideal for mimicking bone extracellular matrix, and many biodegradable and biocompatible polymers are preferred in the field of bone reconstruction. In this study, gelatin, gelatin/nanohydroxyapatite (nHAp) and gelatin/PLLA/nHAp scaffolds were fabricated by the electrospinning process. These composite fibers showed clear and continuous morphology according to observation through a scanning electron microscope and their component analyses were also determined by Fourier transform infrared spectrometer analyses. These characterization experiments revealed the great effects of the electrospinning method for biomedical applications and have an especially important role in bone reconstruction and production of implant coating material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Lee, T. Kim, K. Suk, and K. Paik, J. Electron. Mater. 44, 4628 (2015).

    Article  Google Scholar 

  2. A. Oroumei, H. Tavanai, and M. Morshed, J. Electron. Mater. 40, 2256 (2011).

    Article  Google Scholar 

  3. S. Bhardwaj, J. Paul, S. Chand, K.K. Raina, and R. Kumar, J. Electron. Mater. 44, 3710 (2015).

    Article  Google Scholar 

  4. L. Giorgi, E. Salernitano, T.D. Makris, S. Gagliardi, V. Contini, and M. De Francesco, Int. J. Hydrog. Energy 39, 21601 (2014).

    Article  Google Scholar 

  5. Y. Oh, S. Kim, D. Peck, J. Jang, J. Kim, and D. Jung, Int. J. Hydrog. Energy 39, 15907 (2014).

    Article  Google Scholar 

  6. F. Xu, W. Xiao, B. Cheng, and J. Yu, Int. J. Hydrog. Energy 39, 15394 (2014).

    Article  Google Scholar 

  7. J. Ren, N.M. Musyoka, P. Annamalai, H.W. Langmi, B.C. North, and M. Mathe, Int. J. Hydrog. Energy 40, 9382 (2015).

    Article  Google Scholar 

  8. S.S. Srinivasan, R. Ratnadurai, M.U. Niemann, A.R. Phani, D.Y. Goswami, and E.K. Stefanakos, Int. J. Hydrog. Energy 35, 225 (2010).

    Article  Google Scholar 

  9. T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, and S.S. Ramkumar, J. Appl. Polym. Sci. 96, 557 (2005).

    Article  Google Scholar 

  10. S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers, 1st ed. (Singapore: World Scientific Publishing Co. Pte. Ltd., 2005), p. 15.

    Book  Google Scholar 

  11. W. Cui, Y. Zhou, and J. Chang, Sci. Technol. Adv. Mater. 11, 1 (2010).

    Article  Google Scholar 

  12. K.C. Gupta, A. Haider, Y. Choi, and I. Kang, Biomater. Res. 18, 1 (2014).

    Article  Google Scholar 

  13. R. Khajavi and M. Abbasipour, Sci. Iran. 19, 2029 (2012).

    Article  Google Scholar 

  14. M. Shahi, A. Moghimi, B. Naderizadeh, and B. Maddah, Sci. Iran. 18, 1327 (2011).

    Article  Google Scholar 

  15. M. Prabaharan, R. Jayakumar, and S.V. Nair, Adv. Polym. Sci. 246, 241 (2012).

    Article  Google Scholar 

  16. M.D. Schofer, U. Boudriot, C. Wack, I. Leifeld, C. Grabedünkel, R. Dersch, M. Rudisile, J.H. Wandorff, A. Greiner, J. Paletta, and S. Winkelmann, J Mater Sci 20, 767 (2009).

    Google Scholar 

  17. J. Venugopal, S. Low, A.T. Choon, and S. Ramakrishna, J. Biomed. Mater. Res. Part B 84, 34 (2008).

    Article  Google Scholar 

  18. S. Panzavolta, M. Gioffre, M.L. Focarete, C. Gualandi, L. Foroni, and A. Bigi, Acta Biomater. 7, 1702 (2011).

    Article  Google Scholar 

  19. M. Oraby, A.I. Waley, A.I. el-Dewany, E.A. Saad, and B.M. Abd El-Hady, J. Appl. Sci. Res. 9, 534 (2013).

    Google Scholar 

  20. M.P. Prabhakaran, J. Venugopal, and S. Ramakrishna, Acta Biomater. 5, 2884 (2009).

    Article  Google Scholar 

  21. N. Saglam, E. Emul, S. Saglam, E. Yalcin, M. Sam, and F. Korkusuz, IJTPE. 7, 55 (2015). http://www.iotpe.com/ IJTPE/IJTPE-2015/IJTPE-Issue23-Vol7-No2-Jun2015/11-IJTPE-Issue23-Vol7-No2-Jun2015-pp55-59.pdf. Accessed 11 April 2016.

  22. M. Moffa, A. Polini, A.G. Sciancalepore, L. Persano, E. Mele, L.G. Passione, G. Potente, and D. Pisignano, Soft Matter 9, 5529 (2013).

    Article  Google Scholar 

  23. J.H. Song, H.E. Kim, and H.W. Kim, J. Mater. Sci.: Mater. Med. 19, 2925 (2008).

    Google Scholar 

  24. V.J. Moncy, V. Thomas, Y. Xu, S. Bellis, E. Nyairo, and D. Dean, Macromol. Biosci. 10, 433 (2010).

    Article  Google Scholar 

  25. D.I. Zeugolis, S.T. Khew, E.S.Y. Yew, A.K. Ekaputra, Y.W. Tong, L.L. Yung, D.W. Hutmacher, C. Sheppard, and M. Raghunath, Biomaterials 29, 2293 (2008).

    Article  Google Scholar 

Download references

Acknowledgement

A part of this study was supported by Hacettepe University Scientific Research Projects Coordination (Project Number: 1569) for Nanotechnology and Nanomedicine Division and by TUBITAK (The Scientific and Technological Research Council of Turkey) National Scholarship Programme for MSc Students Scholarship. In addition, this research is part of the MSc. Thesis of Ezgi Emul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Saglam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emul, E., Saglam, S., Ates, H. et al. Characterization of Electrospun Nanofibrous Scaffolds for Nanobiomedical Applications. J. Electron. Mater. 45, 3835–3841 (2016). https://doi.org/10.1007/s11664-016-4549-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4549-7

Keywords

Navigation