Skip to main content
Log in

GaN Technology for Power Electronic Applications: A Review

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Power semiconductor devices based on silicon (Si) are quickly approaching their limits, set by fundamental material properties. In order to address these limitations, new materials for use in devices must be investigated. Wide bandgap materials, such as silicon carbide (SiC) and gallium nitride (GaN) have suitable properties for power electronic applications; however, fabrication of practical devices from these materials may be challenging. SiC technology has matured to point of commercialized devices, whereas GaN requires further research to realize full material potential. This review covers fundamental material properties of GaN as they relate to Si and SiC. This is followed by a discussion of the contemporary issues involved with bulk GaN substrates and their fabrication and a brief overview of how devices are fabricated, both on native GaN substrate material and non-native substrate material. An overview of current device structures, which are being analyzed for use in power switching applications, is then provided; both vertical and lateral device structures are considered. Finally, a brief discussion of prototypes currently employing GaN devices is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Mohan, T. Undeland, and W. Robbins. Power Electronics: Converters, Applications, and Design, ed. B. Zobrist (Hoboken: Wiley, 2003), pp. 1–15.

    Google Scholar 

  2. B.J. Baliga, Fundamentals of Power Semiconductor Devices (New York: Springer, 2008), pp. 23–86.

    Book  Google Scholar 

  3. B.J. Baliga, Silicon Carbide Power Devices (Hackensack: World Scientific, 2005), pp. 15–33.

    Google Scholar 

  4. B.J. Baliga, Silicon Carbide Power Devices (Hackensack: World Scientific, 2005), pp. 37–69.

    Google Scholar 

  5. B.J. Baliga, Fundamentals of Power Semiconductor Devices (New York: Springer, 2008), pp. 1–22.

    Book  Google Scholar 

  6. B.J. Baliga, Semicond. Sci. Technol. 28, 074011 (2013).

    Article  Google Scholar 

  7. A. Lidow, J. Strydom, M. de Rooij, and D. Reusch, GaN Transistors for Efficient Power Conversion (West Sussex: Wiley, 2015), pp. 1–18.

    Google Scholar 

  8. S.B. Bayne and B.N. Pushpakaran, J. Electr. Eng. Electron. Technol. (2012). doi:10.4172/2325-9833.1000101.

    Google Scholar 

  9. K. Motoki, SEI Tech. Rev. 70, 28 (2010).

    Google Scholar 

  10. M. Ueno, S. Yoshimoto, K. Ishihara, M. Okada, K. Sumiyoshi, H. Hirano, F. Mitsuhashi, Y. Yoshizumi, T. Ishizuka, and M. Kiyama, IEEE 26th International Symposium onPower Semiconductor Devices and IC’s (ISPSD), 2014, pp.309–312

  11. O. Aktas, X. Xin, T. Prunty, M. Raj, P. Bui-Quang, M. D’Evelyn, and I. Kizilyalli, International Conference on Compound Semiconductor Manufacturing Technology, 2015, pp. 301–304.

  12. O. Aktas and I. Kizilyalli, Electron. Devic. Lett. 36, 890 (2015).

    Article  Google Scholar 

  13. T. Kikkawa, T. Hosoda, S. Akiyama, Y. Kotani, T. Wakabayashi, Ogino, K. Imanishi, A. Mochizuki, K. Itabashi, K. Shono, Y. Asai, K. Joshin, T. Ohki, M. Kanamura, M. Nishimori, T, Imada, J. Kotani, A. Yamada, N. Nakamura, T. Hirose, and K. Watanabe, IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2013, pp.11–14, 27–29

  14. Y. –F. Wu, J. Guerrero, J. McKay, and K. Smith, IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2014, pp.30–32, 13–15

  15. M. Ishida, T. Ueda, T. Tanaka, and D. Ueda, IEEE Trans. Electron. 60, 3053 (2013).

    Article  Google Scholar 

  16. O. Hilt, R. Zhytnytska, J. Bocker, E. Bahat-Treidel, F. Brunner, A. Knauer, S. Dieckerhoff, and J. Wurfl, IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), 2015, pp.237–240, 10–14

  17. O. Hilt, P. Kotara, F. Brunner, A. Knauer, R. Zhytnytska, and J. Wurfl, IEEE Trans. Electron. 60, 3084 (2013).

    Article  Google Scholar 

  18. B.J. Baliga, Fundamentals of Power Semiconductor Devices (New York: Springer, 2008), pp. 279–506.

    Book  Google Scholar 

  19. K. Koyama, H. Aida, S. Kim, K. Ikejiri, T. Doi, and T. Yamazaki, J. Cryst. Growth 403, 38 (2014).

    Article  Google Scholar 

  20. F. Lipski, T. Wunderer, S. Schwaiger, and F. Scholz, Phys. Status Solidi A 207, 1287 (2010).

    Article  Google Scholar 

  21. K. Murakami, D. Matsuo, H. Imabayashi, H. Takazawa, Y. Todoroki, A. Kitamoto, M. Maruyama, M. Imade, M. Yoshimura, and Y. Mori, Jpn. J. Appl. Phys. 52, 8S (2013)

  22. R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, R. Kucharski, M. Zajac, M. Rudzinski, R. Kudrawiec, W. Strupinki, and J. Misiewicz, Phys. Status Solidi 208, 1489 (2011).

    Article  Google Scholar 

  23. A. Hanser and K. Evans, Technology of Gallium Nitride Crystal Growth (New York: Springer, 2010), pp. 3–25.

    Book  Google Scholar 

  24. A. Koukitu and Y. Kumagai, Technology of Gallium Nitride Crystal Growth (New York: Springer, 2010), pp. 31–59.

    Book  Google Scholar 

  25. H. Aida, H. Takeda, N. Aota, and K. Koyama, Jpn. J. Appl. Phys. 51, 016504 (2011).

    Article  Google Scholar 

  26. H. Aida, N. Aota, H. Takeda, and K. Koyama, J. Cryst. Growth 361, 135 (2012).

    Article  Google Scholar 

  27. S. Pearton, C. Abernathy, and F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics (London: Springer, 2006), p. 1.

    Google Scholar 

  28. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).

    Article  Google Scholar 

  29. S. Pearton, C. Abernathy, and F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics (London: Springer, 2006), p. 313.

    Google Scholar 

  30. T. Heidel, P. Gradzki, and D. Henshall, 73rd Annual Device Research Conference (DRC), pp.27–28, 21–24 (2015).

  31. U. Mishra, P. Parikh, and Y.-F. Wu, Proc. IEEE 90, 1022 (2002).

    Article  Google Scholar 

  32. Y.-F. Wu, D. Kapolnek, J. Ibbetson, P. Parikh, B. Keller, and U. Mishra, IEEE T. Electron. Dev. 48, 586 (2001).

    Article  Google Scholar 

  33. S. Hamady, Micro and nanotechnologies/Microelectronics (Toulouse: Universite Toulouse III Paul Sabatier, 2014).

    Google Scholar 

  34. T. Kikkawa, T. Hosoda, K. Shono, K. Imanishi, Y. Asai, Y.-F. Wu, L. Shen, K. Smith, D. Dunn, S. Chowdhury, P. Smith, J. Gritters, L. McCarthy, R. Barr, R. Lal, U. Mishra, and P. Parikh, IEEE International Reliability Physics Symposium (IRPS), 2015, pp. 6C.1.1–6C.1.6, 19–23

  35. L.-Y. Su, F. Lee, and J. Huang, IEEE T. Electron. Dev. 61, 460 (2014).

    Article  Google Scholar 

  36. J. Du, D. Liu, Z. Bai, Y. Liu, and Q. Yu, Superlattices Microstruct. 85, 690 (2015).

    Article  Google Scholar 

  37. I. Kizilyalli, A. Edwards, O. Aktas, T. Prunty, and D. Bour, IEEE Trans. Electron Dev. 62, 414 (2015).

    Article  Google Scholar 

  38. J. Du, D. Liu, Z. Zhao, Z. Bai, L. Li, J. Mo, and Q. Yu, Superlattices Microstruct. 83, 251 (2015).

    Article  Google Scholar 

  39. D. Ji and S. Chowdhury, IEEE T Electron. Dev. 62, 2571 (2015).

    Article  Google Scholar 

  40. S. Chowdhury, M. Wong, B. Swenson, and U. Mishra, IEEE Electron. Dev. 33, 41 (2012).

    Article  Google Scholar 

  41. I. Ben-Yaacov, Y.-K. Seck, and U. Mishra, J. Appl. Phys. 95, 2073 (2004).

    Article  Google Scholar 

  42. S.-H. Ryu, S. Krishnaswami, B. Hull, J. Richmond, A. Agarwal, and A. Hefner, IEEE International Symposium on Power Semiconductor Devices and IC’s (ISPSD), 2006, pp.1–4

  43. A. Bindra. GaN Power Modules Promise To Raise The Performance Bar. How2Power Today, 2013, pp. 1–4.

  44. GaN Systems Corp. APEI and GaN Systems Demonstrate High Efficiency DC-DC Boost Converter with Ultra-High Speed Gallium Nitride Switch. (Thomas Publishing Company, 2013). Web. http://www.gansystems.com/_uploads/ news/589943_0313%20GaN%20Systems%20APEI.pdf. Accessed 12 Feb 2015.

  45. GaN Systems Inc. High efficiency 2 kW–5 kW boost converter. Application brief (2013)

  46. Transphorm Inc., Transphorm Motor-Drive Development Kits, TDMC4000E0I datasheet (2013)

  47. Y.-F. Wu, Applied Power Electronics Conference (2013)

  48. K. Shirabe, M. Swamy, J.-K. Kang, M. Hisatsune, Y.-F. Wu, D. Kebort, and J. Honea, IEEE T. Ind. Appl. 50, 566 (2014).

    Article  Google Scholar 

  49. Transphorm Inc., GaN Power Low-Loss Switch, TPH3002PS datasheet (2014)

  50. Transphorm Inc., EZ-GaN Evaluation Board, 750 kHz PFC, TDPS300E1A8 datasheet (2014)

  51. A. Wienhausen and D. Kranzer, Mater. Sci. Forum 740–742, 1123 (2013).

    Article  Google Scholar 

  52. Fraunhofer-Institut Für Solare Energiesysteme ISE. Towards Smaller Sizes, Lower Weight and Higher Efficiency with Gallium Nitride Devices. https://www.ise. fraunhofer.de/en/press-and-media/press-releases/press- releases-2012/gallium-nitride-devices. Accessed 12 Feb 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler J. Flack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flack, T.J., Pushpakaran, B.N. & Bayne, S.B. GaN Technology for Power Electronic Applications: A Review. J. Electron. Mater. 45, 2673–2682 (2016). https://doi.org/10.1007/s11664-016-4435-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4435-3

Keywords

Navigation