Skip to main content
Log in

Growth and Characterization of Polyimide-Supported AlN Films for Flexible Surface Acoustic Wave Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Highly c-axis oriented aluminum nitride (AlN) films, which can be used in flexible surface acoustic wave (SAW) devices, were successfully deposited on polyimide (PI) substrates by direct current reactive magnetron sputtering without heating. The sputtering power, film thickness, and deposition pressure were optimized. The characterization studies show that at the optimized conditions, the deposited AlN films are composed of columnar grains, which penetrate through the entire film thickness (~2 μm) and exhibit an excellent (0002) texture with a full width at half maximum value of the rocking curve equal to 2.96°. The film surface is smooth with a root mean square value of roughness of 3.79 nm. SAW prototype devices with a center frequency of about 520 MHz and a phase velocity of Rayleigh wave of about 4160 m/s were successfully fabricated using the AlN/PI composite structure. The obtained results demonstrate that the highly c-axis oriented AlN films with a smooth surface and low stress can be produced on relatively rough, flexible substrates, and this composite structure can be possibly used in flexible SAW devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Sun and J.A. Rogers, Adv. Mater. 19, 1897 (2007).

    Article  Google Scholar 

  2. X. He, D. Li, J. Zhou, W. Wang, W. Xuan, S. Dong, H. Jin, and J. Luo, J. Mater. Chem. C 1, 6210 (2013).

    Article  Google Scholar 

  3. S. Petroni, G. Maruccio, F. Guido, M. Amato, A. Campa, A. Passaseo, M.T. Todaro, and M. De Vittorio, Microelectron. Eng. 98, 603 (2012).

    Article  Google Scholar 

  4. N. Jackson, L. Keeney, and A. Mathewson, Smart Mater. Struct. 22, 115033 (2013).

    Article  Google Scholar 

  5. H. Jin, J. Zhou, X. He, W. Wang, H. Guo, S. Dong, D. Wang, Y. Xu, J. Geng, J.K. Luo, and W.I. Milne, Sci. Rep. 3, 2140 (2013).

    Google Scholar 

  6. C. Caliendo, P. Imperatori, and E. Cianci, Thin Solid Films 441, 32 (2003).

    Article  Google Scholar 

  7. K.S. Kao, C.C. Cheng, Y.C. Chen, and C.H. Chen, Appl. Surf. Sci. 230, 334 (2004).

    Article  Google Scholar 

  8. R. Rimeika, A. Sereika, and D. Čiplys, Appl. Phys. Lett. 98, 052909 (2011).

    Article  Google Scholar 

  9. T. Aubert, M.B. Assouar, O. Legrani, O. Elmazria, C. Tiusan, and S. Robert, J. Vac. Sci. Technol. A 29, 021010 (2011).

    Article  Google Scholar 

  10. C.C. Sung, Y.F. Chiang, R. Ro, R. Lee, and S. Wu, J. Appl. Phys. 106, 124905 (2009).

    Article  Google Scholar 

  11. S. Petroni, C. La Tegola, G. Caretto, A. Campa, A. Passaseo, M. De Vittorio, and R. Cingolani, Microelectron. Eng. 88, 2372 (2011).

    Article  Google Scholar 

  12. H.Y. Liu, G.S. Tang, F. Zeng, and F. Pan, J. Cryst. Growth 363, 80 (2013).

    Article  Google Scholar 

  13. S. Petroni, F. Guido, B. Torre, A. Falqui, M.T. Todaro, R. Cingolani, and M. De Vittorio, Analyst 137, 5260 (2012).

    Article  Google Scholar 

  14. H. Jin, J. Zhou, S.R. Dong, B. Feng, J.K. Luo, D.M. Wang, W.I. Milne, and C.Y. Yang, Thin Solid Films 520, 4863 (2012).

    Article  Google Scholar 

  15. S.G. Yang, A.B. Pakhomov, S.T. Hung, and C.Y. Wong, Appl. Phys. Lett. 81, 2418 (2002).

    Article  Google Scholar 

  16. M. Akiyama, Y. Morofuji, T. Kamohara, K. Nishikubo, M. Tsubai, O. Fukuda, and N. Ueno, J. Appl. Phys. 100, 114318 (2006).

    Article  Google Scholar 

  17. M. Akiyama, Y. Morofuji, T. Kamohara, K. Nishikubo, Y. Ooishi, M. Tsubai, and N. Ueno, Adv. Funct. Mater. 17, 458 (2007).

    Article  Google Scholar 

  18. M. Akiyama, Y. Morofuji, K. Nishikubo, and T. Kamohara, Appl. Phys. Lett. 92, 043509 (2008).

    Article  Google Scholar 

  19. K.-H. Chiu, J.-H. Chen, H.-R. Chen, and R.-S. Huang, Thin Solid Films 515, 4819 (2007).

    Article  Google Scholar 

  20. F. Martin, P. Muralt, M.A. Dubois, and A. Pezous, J. Vac. Sci. Technol. A 22, 361 (2004).

    Article  Google Scholar 

  21. X.H. Xu, H.S. Wu, C.J. Zhang, and Z.H. Jin, Thin Solid Films 388, 62 (2001).

    Article  Google Scholar 

  22. H. Liu, F. Zeng, G. Tang, and F. Pan, Appl. Surf. Sci. 270, 225 (2013).

    Article  Google Scholar 

  23. T. Prokofyeva, M. Seon, J. Vanbuskirk, M. Holtz, S. Nikishin, N. Faleev, H. Temkin, and S. Zollner, Phys. Rev. B 63, 125313 (2001).

    Article  Google Scholar 

  24. V. Lughi and D.R. Clarke, Appl. Phys. Lett. 89, 241911 (2006).

    Article  Google Scholar 

  25. A.P. Huang, G.J. Wang, S.L. Xu, M.K. Zhu, G.H. Li, B. Wang, and H. Yan, Mater. Sci. Eng. B 107, 161 (2004).

    Article  Google Scholar 

  26. S.H. Lee, J.K. Lee, and K.H. Yoon, J. Vac. Sci. Technol. A 21, 1 (2003).

    Article  Google Scholar 

  27. A. Artieda, M. Barbieri, C.S. Sandu, and P. Muralt, J. Appl. Phys. 105, 024504 (2009).

    Article  Google Scholar 

  28. DuPont™ Kapton® HN polyimide film Technical Data Sheet. http://www.dupont.com/content/dam/assets/products-and-services/membranes-films/assets/DEC-Kapton-HN-datasheet.pdf. Accessed 25 May 2015

  29. Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).

    Article  Google Scholar 

  30. A.F. Wright, J. Appl. Phys. 82, 2833 (1997).

    Article  Google Scholar 

  31. C.M. Lin, W.C. Lien, V.V. Felmetsger, M.A. Hopcroft, D.G. Senesky, and A.P. Pisano, Appl. Phys. Lett. 97, 141907 (2010).

    Article  Google Scholar 

  32. S. Wenzel and R. White, Appl. Phys. Lett. 54, 1976 (1989).

    Article  Google Scholar 

  33. J.T. Luo, P.X. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, Biosens. Bioelectron. 49, 512 (2013).

    Article  Google Scholar 

  34. F. Di Pietrantonio, M. Benetti, V. Dinca, D. Cannatà, E. Verona, S. D’Auria, and M. Dinescu, Appl. Surf. Sci. 302, 250 (2014).

    Article  Google Scholar 

  35. C.-M. Lin, T.-T. Yen, Y.-J. Lai, V.V. Felmetsger, M.A. Hopcroft, J.H. Kuypers, and A.P. Pisano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 524 (2010).

  36. C.-M. Lin, Y.-Y. Chen, V.V. Felmetsger, W.C. Lien, T. Riekkinen, D.G. Senesky, and A.P. Pisano, J. Micromech. Microeng. 23, 025019 (2013).

    Article  Google Scholar 

  37. C.-M. Lin, Y.-Y. Chen, V.V. Felmetsger, D.G. Senesky, and A.P. Pisano, Adv. Mater. 24, 2722 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science foundation of China (Grant Nos. 51371103 and 51231004), National Basic Research Program of China (Grant No. 2010CB832905) and National Hi-tech (R&D) project of China (Grant Nos. 2012AA03A706, 2013AA030801), and the Research Project of Chinese Ministry of Education (No 113007A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Liu, H., Li, G. et al. Growth and Characterization of Polyimide-Supported AlN Films for Flexible Surface Acoustic Wave Devices. J. Electron. Mater. 45, 2702–2709 (2016). https://doi.org/10.1007/s11664-016-4420-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4420-x

Keywords

Navigation