Skip to main content
Log in

Structural Dependence of Microwave Dielectric Properties of Spinel-Structured Li2ZnTi3O8 Ceramic: Crystal Structure Refinement and Raman Spectroscopy Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The relationship between the structure and microwave dielectric properties of spinel-structured Li2ZnTi3O8 ceramic has been studied by structure refinement and Raman spectroscopy analysis. The vibration modes of Li2ZnTi3O8 were classified by group-theoretical analysis, and the observed Raman spectra of Li2ZnTi3O8 ceramic assigned. The correlations between bond strengths, packing fraction, the stretch mode of the oxygen octahedron (A 1g(1) mode), and the microwave dielectric properties are discussed. With increase of the A 1g(1) Raman shift, the oxygen octahedron became rigid, thereby decreasing the dielectric constant (ε r). With increasing packing fraction and decreasing full-width at half-maximum (FWHM) of A 1g(1) mode, the lattice anharmonic vibration decreased, the damping behavior of A 1g(1) stretch vibration became weaker, and the intrinsic quality factor (Q × f) accordingly increased. The temperature coefficient of resonant frequency (τ f ) improved with the increase of bond strength, irrespective of oxygen octahedron distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, and H. Ohsato, J. Eur. Ceram. Soc. 23, 2573 (2003).

    Article  Google Scholar 

  2. W. Lei, W.Z. Lu, J.H. Zhu, F. Liang, and D. Liu, J. Am. Ceram. Soc. 91, 1958 (2008).

    Article  Google Scholar 

  3. V.S. Hernandez, L.M. Martinez, G.C. Mather, and A.R. West, J. Mater. Chem. 6, 1533 (1996).

    Article  Google Scholar 

  4. S. George and M.T. Sebastian, J. Am. Ceram. Soc. 93, 2164 (2010).

    Article  Google Scholar 

  5. Y. Wu, D. Zhou, J. Guo, L.X. Pang, H. Wang, and X. Yao, Mater. Lett. 65, 2680 (2011).

    Article  Google Scholar 

  6. X.P. Lu, Y. Zheng, and B. Zhou, J. Electroceram. 31, 360 (2013).

    Article  Google Scholar 

  7. G.H. Chen, J. Liu, X.Q. Li, H.R. Xu, M.H. Jiang, and C.R. Zhou, Bull. Mater. Sci. 34, 1233 (2011).

    Article  Google Scholar 

  8. X.P. Lv, Y. Zheng, B. Zhou, Z.W. Dong, and P. Cheng, Mater. Lett. 91, 217 (2013).

    Article  Google Scholar 

  9. Y.X. Li, J.S. Li, B. Tang, S.R. Zhang, H. Li, Z.J. Qin, H.T. Chen, H. Yang, and H. Tu, J. Mater. Sci. Mater. Electron. 25, 2780 (2014).

    Article  Google Scholar 

  10. M.Z. Hou, G.H. Chen, Y. Bao, Y. Yang, and C.L. Yuan, J. Mater. Sci. Mater. Electron. 23, 1722 (2012).

    Article  Google Scholar 

  11. Q.W. Liao, L.X. Li, X. Ding, and X. Ren, J. Am. Ceram. Soc. 95, 1501 (2012).

    Article  Google Scholar 

  12. T. Shimada, J. Eur. Ceram. Soc. 26, 1781 (2006).

    Article  Google Scholar 

  13. X.P. Lu, Y. Zheng, Q. Huang, and W.H. Xiong, J. Electron. Mater. 44, 4243 (2015).

    Article  Google Scholar 

  14. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  15. E.S. Kim, B.S. Chun, R. Freer, and R.J. Cernik, J. Eur. Ceram. Soc. 30, 1731 (2010).

    Article  Google Scholar 

  16. I.D. Brown and R.D. Shannon, Acta Crystallogr. A 29, 266 (1973).

    Article  Google Scholar 

  17. E.S. Kim, S.H. Kim, and K.H. Yoon, J. Ceram. Soc. Jpn. 112, 1645 (2004).

    Google Scholar 

  18. B.W. Hakki and P.D. Coleman, IEEE Trans. Microw. Theory Technol. 7, 402 (1960).

    Article  Google Scholar 

  19. V.L. Gurevich and A.K. Tagantsev, Adv. Phys. 40, 719 (1991).

    Article  Google Scholar 

  20. N. Jović, M. Vučinić-Vasić, A. Kremenović, B. Antić, č. Jovalekić, P. Vulić, V. Kahlenberg, and R. Kaindl, Mater. Chem. Phys. 116, 542 (2009).

    Article  Google Scholar 

  21. L. Aldon, P. Kubiak, M. Womes, J. Jumas, J. Olivier-Fourcade, J. Tirado, J. Corredor, and C.P. Vicente, Chem. Mater. 16, 5721 (2004).

    Article  Google Scholar 

  22. Y.D. Dai, G.H. Zhao, and H.X. Liu, J. Appl. Phys. 105, 034111-1 (2009).

    Google Scholar 

  23. E.S. Kim and C.J. Jeon, J. Eur. Ceram. Soc. 30, 341 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC-51174118), “333” High-Level Talents Training Project of Jiangsu Province, “Blue Project” of Jiangsu Province, Project of the “PAPD” of Jiangsu Higher Education Institutions, and Project of State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (No. P2015-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Zheng, Y., Huang, Q. et al. Structural Dependence of Microwave Dielectric Properties of Spinel-Structured Li2ZnTi3O8 Ceramic: Crystal Structure Refinement and Raman Spectroscopy Study. J. Electron. Mater. 45, 940–946 (2016). https://doi.org/10.1007/s11664-015-4232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4232-4

Keywords

Navigation