Skip to main content
Log in

Effect of Sn Doping in (Bi0.25Sb0.75)2−x Sn x Te3 (0 ≤ x ≤ 0.1) on Thermoelectric Performance

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report the effect of Sn doping on the thermoelectric performance of (Bi0.25Sb0.75)2−x Sn x Te3 compounds (x = 0, 0.005, 0.01, 0.05, 0.1, 0.2) synthesized by the melting method followed by high-energy ball milling and spark plasma sintering. As indicated by transmission electron microscopy and scanning electron microscopy images, layered structure and inhomogeneous nanostructures are present in (Bi0.25Sb0.75)2−x Sn x Te3. It is found that Sn doping dramatically reduces the thermal conductivity together with a minor decline in the electrical conductivity, yielding a net enhancement of the figure of merit (ZT). The highest ZT value is approximately 1.03 at 338 K when x is 0.01, an increase of 28.4% compared with the pure sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.J. Goldsmid, Electronic Refrigeration (London: Pion, 1986).

    Google Scholar 

  2. A.F. Iofee, Semiconductor thermoelements and thermoelectric cooling (London: Infosearch Ltd., 1957).

    Google Scholar 

  3. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  4. D.L. Medlin, K.J. Erickson, S.J. Limmer, W.G. Yelton, and M.P. Siegal, J. Mater. Sci. 49, 3970 (2014).

    Article  Google Scholar 

  5. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).

    Article  Google Scholar 

  6. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, and S.W. Kim, Science 348, 109 (2015).

    Article  Google Scholar 

  7. G. Zheng, X.L. Su, T. Liang, Q.B. Lu, Y.G. Yan, C. Uher, and X.F. Tang, J. Mater. Chem. A 3, 6603 (2015).

    Article  Google Scholar 

  8. Y. Zheng, Q. Zhang, X.L. Su, H.Y. Xie, G.J. Tan, Y.G. Yan, X.F. Tang, C. Uher, and G.J. Snyder, Adv. Energy Mater. 5, 5 (2015).

    Google Scholar 

  9. H. Li, X.F. Tang, X.L. Su, and Q.J. Zhang, Appl. Phys. Lett. 92, 202114 (2008).

    Article  Google Scholar 

  10. R.M. German, P. Suri, and S.J. Park, J. Mater. Sci. 44, 1 (2009).

    Article  Google Scholar 

  11. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  12. B. Xie, High performance p-type Bi2Te3 compounds with multi-scale nanostructures prepared by melt-spinning technique. Doctor Thesis, Wuhan University of Technology, Wuhan, Hubei, China (2011).

  13. B. B. Liang, Preparation and Thermoelectric Properties of Raphene/Bi2Te3 Based Thermoelectric Materials. Master Thesis, Donghua University, China (2013).

  14. H. Kaur, L. Sharma, S. Singh, B. Sivaiah, G.B. Reddy, and T.D. Senguttuvan, J. Electron. Mater. 43, 1782 (2014).

    Article  Google Scholar 

  15. X.F. Tang, W.J. Xie, H. Li, W.Y. Zhao, and Q.J. Zhang, Appl. Phys. Lett. 90, 012102 (2007).

    Article  Google Scholar 

  16. H. Y. Lv, Theoretical studies on the thermoelectric properties of bismuth based bulk and low-dimensional structures. Doctor Thesis, Wuhan University, Wuhan, Hubei, China (2013).

  17. L.D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou, K. Biswas, J.Q. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 6, 3346 (2013).

    Article  Google Scholar 

  18. L.D. Zhao, B.P. Zhang, J.F. Li, H.L. Zhang, and W.S. Liu, Solid State Sci. 10, 651 (2008).

    Article  Google Scholar 

  19. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).

    Article  Google Scholar 

  20. S.Y. Wang, G.J. Tan, W.J. Xie, G. Zheng, H. Li, J.H. Yang, and X.F. Tang, J. Mater. Chem. 22, 20943 (2012).

    Article  Google Scholar 

  21. D.B. Williams and C.B. Carter, Transmission Electron Microscopy (New York: Springer, 1996).

    Book  Google Scholar 

  22. H. Wang, A.D. LaLonde, Y. Pei, and G.J. Snyder, Adv. Funct. Mater. 23, 1586 (2013).

    Article  Google Scholar 

  23. D.F. Zou, S.H. Xie, Y.Y. Liu, J.G. Lin, and J.G. Li, J. Alloys Compd. 570, 150 (2013).

    Article  Google Scholar 

  24. G. Rogl, D. Setman, E. Schafler, J. Horky, M. Kerber, M. Zehetbauer, M. Falmbigl, P. Rogl, E. Royanian, and E. Bauer, Acta Mater. 60, 146 (2012).

    Google Scholar 

  25. G. Kresse and J. Frthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  26. D.L. Greenaway and G. Harbeke, J. Phys. Chem. Solids 26, 1585 (1965).

    Article  Google Scholar 

  27. W.R. Bekebrede and O.J. Guentert, J. Phys. Chem. Solids 23, 1023 (1962).

    Article  Google Scholar 

  28. J. He, S.N. Girard, M.G. Kanatzidis, and V.P. Dravid, Adv. Funct. Mater. 20, 764 (2010).

    Article  Google Scholar 

  29. S.K. Bux, J.P. Fleurial, and R.B. Kaner, Chem. Commun. 46, 8311 (2010).

    Article  Google Scholar 

  30. C.T. Walker and R.O. Pohl, Phys. Rev. 131, 1433 (1963).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by the National Natural Science Foundation of China (Grant Nos. 11344010, 11404044, 51472036) and the Fundamental Research Funds for the Central Universities (CQDXWL-2013-Z010). This work at the Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences is supported by the One Hundred Person Project of the Chinese Academy of Science (Grant No. 2013-46).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoyu Wang or Xiaoyuan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Guo, L., Xu, X. et al. Effect of Sn Doping in (Bi0.25Sb0.75)2−x Sn x Te3 (0 ≤ x ≤ 0.1) on Thermoelectric Performance. J. Electron. Mater. 45, 1441–1446 (2016). https://doi.org/10.1007/s11664-015-4061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4061-5

Keywords

Navigation