Skip to main content

Advertisement

Log in

Amorphous and Nanocomposite Materials for Energy-Efficient Electric Motors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We explore amorphous soft-magnetic alloys as candidates for electric motor applications. The Co-rich system combines the benefits of low hysteretic and eddy-current losses while exhibiting negligible magnetostriction and robust mechanical properties. The amorphous precursors can be devitrified to form nanocomposite magnets. The superior characteristics of these materials offer the advantages of ease of handling in the manufacturing processing and low iron losses during motor operation. Co-rich amorphous ribbons were laser-cut to build a stator for a small demonstrator permanent-magnet machine. The motor was tested up to ~30,000 rpm. Finite-element analyses proved that the iron losses of the Co-rich amorphous stator were ~80% smaller than for a Si steel stator in the same motor, at 18,000 rpm (equivalent to an electric frequency of 2.1 kHz). These low-loss soft magnets have great potential for application in highly efficient high-speed electric machines, leading to size reduction as well as reduction or replacement of rare earths in permanent-magnet motors. More studies evaluating further processing techniques for amorphous and nanocomposite materials are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Waide and C.U. Brunner, IEA Energy Pap. (2011). doi:10.1787/5kgg52gb9gjd-en.

    Article  Google Scholar 

  2. A.M. Leary, P.R. Ohodnicki, and M.E. McHenry, JOM (2012). doi:10.1007/s11837-012-0350-0.

    Google Scholar 

  3. M. Catinat, Critical Raw Materials for the EU—Report of the Ad-Hoc Working Group on Defining Critical Raw Materials (European Commission, 2010). http://ec.europa. eu/enterprise/policies/raw-materials/files/docs/report-b_en.pdf. Accessed 23 June 2015.

  4. National Research Council, Minerals, critical minerals and the US economy (The National Academies Press, 2008). http://www.nma.org/pdf/101606_nrc_study.pdf. Accessed 23 June 2015.

  5. APS Panel on Public Affairs, Materials Research Society, Energy critical elements: securing materials for emerging technologies (American Physical Society 2011). http://www.aps.org/policy/reports/popa-reports/upload/elementsreport.pdf. Accessed 23 June 2015.

  6. G. Herzer, Handb. Magn. Mater. (1997). doi:10.1016/S1567-2719(97)10007-5.

    Google Scholar 

  7. G. Herzer, Handb. Magn. Adv. Magn. Mater. (2007). doi:10.1002/9780470022184.hmm402.

    Google Scholar 

  8. G. Herzer, M. Vazquez, M. Knobel, A. Zhukov, T. Reininger, H. Davies, R. Grössinger, and J.S. Ll, J. Magn. Magn. Mater. (2005). doi:10.1016/j.jmmm.2005.03.042.

    Google Scholar 

  9. R. Alben, J. Becker, and M. Chi, J. Appl. Phys. (1978). doi:10.1063/1.324881.

    Google Scholar 

  10. M.E. McHenry, M.A. Willard, and D.E. Laughlin, Prog. Mater Sci. (1999). doi:10.1016/S0079-6425(99)00002-X.

    Google Scholar 

  11. M. McHenry and D. Laughlin, Acta Mater. (2000). doi:10.1016/S1359-6454(99)00296-7.

    Google Scholar 

  12. J. Silveyra, A. Leary, V. DeGeorge, S. Simizu, and M. McHenry, J. Appl. Phys. (2014). doi:10.1063/1.4864247.

    Google Scholar 

  13. R. Kolano, A. Kolano-Burian, M. Polak, and J. Szynowski, IEEE Trans. Magn. (2014). doi:10.1109/TMAG.2013.2283918.

    Google Scholar 

  14. A.T. de Almeida, F.J. Ferreira, and G. Baoming, IEEE Trans. Ind. Appl. (2014). doi:10.1109/TIA.2013.2288425.

    Google Scholar 

  15. N. Ertugrul, R. Hasegawa, W. Soong, J. Gayler, S. Kloeden, and S. Kahourzade, IEEE Trans. Magn. (2015). doi:10.1109/TMAG.2015.2399867.

    Google Scholar 

  16. Z. Wang, R. Masaki, S. Morinaga, Y. Enomoto, H. Itabashi, M. Ito, and S. Tanigawa, IEEE Trans. Ind. Appl. (2011). doi:10.1109/TIA.2011.2127430.

    Google Scholar 

  17. A.M. Leary, P.R. Ohodnicki, M.E. Mchenry, V. Keylin, J. Huth, and S.J. Kernion, US Patent 20,140,338,793 (Filed 15 May 2014).

  18. D. Kowal, P. Sergeant, L. Dupré, and A. Van den Bossche, IEEE Trans. Magn. 46, 279–285 (2010). doi:10.1109/TMAG.2009.2032145.

    Article  Google Scholar 

  19. P. Ohodnicki, S. Park, H. McWilliams, K. Ramos, D. Laughlin, and M. McHenry, J. Appl. Phys. (2007). doi:10.1063/1.2711283.

    Google Scholar 

  20. P. Ohodnicki, D. Laughlin, M. McHenry, and M. Widom, Acta Mater. (2010). doi:10.1016/j.actamat.2010.05.015.

    Google Scholar 

  21. S.J. Kernion, P.R. Ohodnicki, and M.E. McHenry, J. Appl. Phys. (2012). doi:10.1063/1.3673433.

    Google Scholar 

  22. A. Leary, V. Keylin, P.R. Ohodnicki, and M.E. McHenry, J. Appl. Phys. (2015). doi:10.1063/1.4919230.

    Google Scholar 

  23. S. Shen, P. Ohodnicki, S. Kernion, and M. McHenry, J. Appl. Phys. (2012). doi:10.1063/1.4765673.

    Google Scholar 

  24. Trading Economics (2015). http://www.tradingeconomics. com/united-states/electricity/. Accessed 23 June 2015.

  25. R. Saidur, Renew. Sustain. Energy Rev. (2010). doi:10.1016/j.rser.2009.10.018.

    Google Scholar 

  26. United States Environmental Protection Agency (2015). http://www.epa.gov/cleanenergy/energy-resources/refs.html. Accessed 23 June 2015.

  27. M. E. McHenry, J. Long, Jianguo, V. Keylin, D. E. Laughlin, J. Huth, and E. Conley, US Patent 8,665,055 B2 (Filed 21 February 2007; Patented 4 March 2014).

  28. A. Krings, Iron Losses in Electrical Machines-Influence of Material Properties, Manufacturing Processes, and Inverter Operation (PhD thesis, KTH Royal Institute of Technology, 2014). http://www.diva-portal.org/smash/record.jsf?pid=diva2:717326. Accessed 23 June 2015.

  29. S.A. Spornic, Automatisation de bancs de caractérisation 2D des tôles magnétiques, Influence des formes d’onde sur les mécanismes d’aimantation, (PhD thesis, Ecole Nationale Supérieure d’Ingénieurs Electriciens de Grenoble, 1998). https://tel.archives-ouvertes.fr/tel-00824201. Accessed 23 June 2015.

Download references

Acknowledgements

M.E.M., A.L., V.K., and V.D. acknowledge support from ARPA-E Award DE-AR0000219. J.M.S. acknowledges support from CONICET, UBACyT 2013-2016 20020120300073BA, and PICT-2012-1097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josefina M. Silveyra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveyra, J.M., Xu, P., Keylin, V. et al. Amorphous and Nanocomposite Materials for Energy-Efficient Electric Motors. J. Electron. Mater. 45, 219–225 (2016). https://doi.org/10.1007/s11664-015-3968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3968-1

Keywords

Navigation