Skip to main content

Advertisement

Log in

Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG’s hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, Int. J. Innov. Energy Syst. Power 1, 1 (2006).

    Google Scholar 

  2. J. Fairbanks, Proceedings of 6th European Conference on Thermoelectrics (2008) Paris PL-01, France, 2–4 July 2008.

  3. D.M. Rowe and G. Min, J. Power Sources 73, 193 (1998).

    Article  Google Scholar 

  4. J. Yang, IEEE 24th International Conference on Thermoelectrics, Clemson, South Carolina, 19–23 June 2005.

  5. J.W. Fairbanks, DEER Conference, Detroit, MI., USA, August 21–25, 2005.

  6. J. LaGrandeur, J.D. Crane, and A. Eder, DEER Conference Chicago, IL, August 21–25, 2005.

  7. K. Ikoma, M. Munkiyo, K. Furuya, M. Kobayashi, H. Komatsu, and K. Shinohara, J. Jpn. Inst. Met. 63, 11 (1999).

    Google Scholar 

  8. A.S. Kushch, J.C. Bass, S. Ghamaty, and N.B. Elsner, Proceedings of the 20th International Conference on Thermoelectrics, Beijing, June 8–11 2001.

  9. B.C. Woo, H.W. Lee, and C.M. Suh, KSME J. B. 26, 10 (2002).

    Google Scholar 

  10. C. John, C. Bass, N. Elsner, S. Ghamaty, V. Jovanovic, and D. Krommenhoek, DEER Conference, Detroit, MI, August 21–25 2005.

  11. E. Thacher, B. Helenbrook, M. Karri, and C. Richter, Proc. Inst. Mech. Eng. D. Eng. 221, 1 (2007).

    Google Scholar 

  12. C.J. Moon, E.H. Cheang, J.M. Lim, S.J. Park, T.G. Kim, and Y.G. Kim, Proceeding of The Korean Solar Energy Society Conference, Seoul, Korea, April 7 2008.

  13. X. Niu, J. Yu, and S. Wang, J. Power Sources 188, 2 (2009).

    Article  Google Scholar 

  14. L.I. Anatychuk, O.J. Luste, and R.V. Kuz, J. Electron. Mater. 40, 5 (2011).

    Google Scholar 

  15. S.H. Kim, S.H. Rhi, J.C. Jang, and K.I. Cha, Adv. Sci. Lett. 6, 150 (2012).

    Article  Google Scholar 

  16. S.W. Chi, Heat pipe theory and practice: a sourcebook (Washington: Hemisphere, 1976).

    Google Scholar 

  17. P.J. Kim, S.H. Rhi, K.B. Lee, H.C. Hwang, J.S. Lee, J.C. Jang, W.H. Lee, and K.W. Lee, J. Electron. Mater. 43, 1613 (2014).

    Article  Google Scholar 

  18. J.C. Jang, S.H. Rhi, K.B. Lee, K.W. Lee, S.K. Kim, S.H. Kim, W.G. Lee, N.K. Kim, and D.R. Shin, Adv. Mater. Res. 535–537, 2100 (2012)

  19. S.K. Kim, B.C. Won, S.H. Rhi, S.H. Kim, and J.H. Yoo, J.␣Electron. Mater. 40, 5 (2011).

    Google Scholar 

  20. S.S. Park, S.K. Kim, S.H. Rhi, and S.H. Kim, J. Electron. Mater. 40, 5 (2011).

    Google Scholar 

  21. L.M. Goncalves, J. Martins, J. Antunes, and R. Rocha, ASME 2010 International Mechanical Engineering Congress & Exposition, Vancouver, British Columbia, Canada, November, 12–18, 2010.

  22. F.P. Brito, J. Martins, L.M. Goncalves, D. Sousa, and N. Antunes, J. Passeng. Cars Mech. Syst. 6, 2 (2013).

    Google Scholar 

  23. J.P. Holman, Experimental Methods for Engineers (New York: McGraw-Hill, 1984).

    Google Scholar 

  24. ANSYS INC, ANSYS CFX-Solver Theory Guide Release 14. 5, (Southpinte, Canonsburg, 2012).

Download references

Acknowledgement

This work was supported by the research grant of the Korea Institute of Energy Research (KIER) in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Ho Rhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, JC., Chi, RG., Rhi, SH. et al. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery. J. Electron. Mater. 44, 2039–2047 (2015). https://doi.org/10.1007/s11664-015-3653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3653-4

Keywords

Navigation