Skip to main content
Log in

Effect of Diffusion Control Layer on Reverse Al-Induced Layer Exchange Process for High-Quality Ge/Al/Glass Structure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fabricating large-grained polycrystalline Ge (poly-Ge) thin films on conducting-layer coated glass is a promising approach to lower the manufacturing cost of high-efficiency III–V tandem solar cells. We investigated the self-organizing formation of poly-Ge/Al/glass structures by using Al-induced layer exchange. The layer exchange between amorphous Ge and Al layers was completed at a low temperature of 350°C. Forming the interlayer between Ge and Al, i.e., limiting the diffusion of Ge to Al lowered the Ge nucleation rate and then enlarged the grain size of the resulting poly-Ge layer. The natively oxidized Al interlayer, formed by exposing a thin Al membrane (2-nm thickness) to air for 180 min, led to the poly-Ge with grains 46 μm in size. Moreover, the Ge layer was highly (111)-oriented. This Ge/Al/glass structure appears promising for use in the bottom cell of the III–V semiconductor based tandem solar cells, as well as in the epitaxial templates for aligned nanowires and other advanced materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, and N.H. Karam, Appl. Phys. Lett. 90, 183516 (2007).

    Article  Google Scholar 

  2. G. Taraschi, A.J. Pitera, and E.A. Fitzgerald, Solid State Electron. 48, 1297 (2004).

    Article  Google Scholar 

  3. D. Shahrjerdi, S.W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J.A. Ott, and D.K. Sadana, Appl. Phys. Lett. 100, 053901 (2012).

    Article  Google Scholar 

  4. M.G. Mauk, J.R. Balliet, and B.W. Feyock, J. Cryst. Growth 250, 50 (2003).

    Article  Google Scholar 

  5. K. Toko, I. Nakao, T. Sadoh, T. Noguchi, and M. Miyao, Solid-State Electron. 53, 1159 (2009).

    Article  Google Scholar 

  6. C.Y. Tsao, J.W. Weber, P. Campbell, G. Conibeer, D. Song, and M.A. Green, Sol. Energy Mater. Sol. Cells 94, 1501 (2010).

    Article  Google Scholar 

  7. M. Tada, J.H. Park, J.R. Jain, and K.C. Saraswat, J. Electrochem. Soc. 156, D23 (2009).

    Article  Google Scholar 

  8. O. Nast, T. Puzzer, L.M. Koschier, A.B. Sproul, and S.R. Wenham, Appl. Phys. Lett. 73, 3214 (1998).

    Article  Google Scholar 

  9. Y. Sugimoto, N. Takata, T. Hirota, K. Ikeda, F. Yoshida, H. Nakashima, and H. Nakashima, Jpn. J. Appl. Phys. 44, 4770 (2005).

    Article  Google Scholar 

  10. A. Sarikov, J. Schneider, J. Berghold, M. Muske, I. Sieber, S. Gall, and W. Fuhs, J. Appl. Phys. 107, 114318 (2010).

    Article  Google Scholar 

  11. B.I. Birajdar, T. Antesberger, B. Butz, M. Stutzmann, and E. Spiecker, Scr. Mater. 66, 550 (2012).

    Article  Google Scholar 

  12. M. Kurosawa, N. Kawabata, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 95, 132103 (2009).

    Article  Google Scholar 

  13. I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, Thin Solid Films 516, 6984 (2008).

    Article  Google Scholar 

  14. H. Kuraseko, N. Orita, H. Koaizawa, and M. Kondo, Appl. Phys. Express 2, 015501 (2009).

    Article  Google Scholar 

  15. K. Toko, R. Numata, N. Saitoh, N. Yoshizawa, N. Usami, and T. Suemasu, J. Appl. Phys. 115, 094301 (2014).

    Article  Google Scholar 

  16. F. Katsuki, K. Hanafusa, M. Yonemura, T. Koyama, and M. Doi, J. Appl. Phys. 89, 4643 (2001).

    Article  Google Scholar 

  17. R. Zanatta and I. Chambouleyron, J. Appl. Phys. 97, 094914 (2005).

    Article  Google Scholar 

  18. Z.M. Wang, J.Y. Wang, L.P.H. Jeurgens, F. Phillipp, E. Mittemeijer, and J. Acta, Materialia 56, 5047 (2008).

    Article  Google Scholar 

  19. S. Hu, A.F. Marshall, and P.C. McIntyre, Appl. Phys. Lett. 97, 082104 (2010).

    Article  Google Scholar 

  20. C.-N. Yeh, K. Yang, H.-Y. Lee, and A.T. Wu, J. Electron. Mater. 41, 159 (2011).

    Article  Google Scholar 

  21. W. Zhang, F. Ma, T. Zhang, and K. Xu, Thin Solid Films 520, 708 (2011).

    Article  Google Scholar 

  22. S. Peng, D. Hu, and D. He, Appl. Surf. Sci. 258, 6003 (2012).

    Article  Google Scholar 

  23. Q. Chen, C. Li, Z. Chen, Z. Jial, M. Wu, C. Shek, C.M.L. Wu, and J.K.L. Lai, Inorg. Chem. 51, 8473 (2012).

    Article  Google Scholar 

  24. M. Kurosawa, N. Kawabata, T. Sadoh, and M. Miyao, ECS J. Solid State Sci. Tech. 1, 144 (2012).

    Article  Google Scholar 

  25. S. Hu and P.C. McIntyre, J. Appl. Phys. 111, 044908 (2012).

    Article  Google Scholar 

  26. J.-H. Park, T. Suzuki, M. Kurosawa, M. Miyao, and T. Sadoh, Appl. Phys. Lett. 103, 082102 (2013).

    Article  Google Scholar 

  27. K. Toko, M. Kurosawa, N. Saitoh, N. Yoshizawa, N. Usami, M. Miyao, and T. Suemasu, Appl. Phys. Lett. 101, 072106 (2012).

    Article  Google Scholar 

  28. K. Nakazawa, K. Toko, N. Saitoh, N. Yoshizawa, N. Usami, and T. Suemasu, ECS J. Solid State Sci. Technol. 2, Q195 (2013).

    Article  Google Scholar 

  29. K. Toko, K. Nakazawa, N. Saitoh, N. Yoshizawa, N. Usami, and T. Suemasu, Cryst. Growth Des. 13, 3908 (2013).

    Article  Google Scholar 

  30. R.R. Lieten, S. Degroote, K. Cheng, M. Leys, M. Kuijk, and G. Borghs, Appl. Phys. Lett. 89, 252118 (2006).

    Article  Google Scholar 

  31. M. Suzuno, T. Koizumi, H. Kawakami, and T. Suemasu, Jpn. J. Appl. Phys. 49, 04DP05 (2010).

    Article  Google Scholar 

  32. N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J.I. Hong, Z.L. Wang, and R.L. Snyder, ACS Nano 4, 3807 (2010).

    Article  Google Scholar 

  33. K. Toko, R. Numata, N. Oya, N. Fukata, N. Usami, and T. Suemasu, Appl. Phys. Lett. 104, 022106 (2014).

    Article  Google Scholar 

  34. N. Oya, K. Toko, N. Saitoh, N. Yoshizawa, and T. Suemasu, Appl. Phys. Lett. 104, 262107 (2014).

    Article  Google Scholar 

  35. K. Toko, K. Nakazawa, N. Saitoh, N. Yoshizawa, N. Usami, and T. Suemasu, CrystEngComm 16, 2578 (2014).

    Article  Google Scholar 

  36. A.A. Stekolnikov, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 65, 1 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Japan Science Society and the Iwatani Naoji Foundation. Some experiments were conducted at the International Center for Young Scientists in NIMS and at Electron Microscope Facility in AIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Toko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakazawa, K., Toko, K. & Suemasu, T. Effect of Diffusion Control Layer on Reverse Al-Induced Layer Exchange Process for High-Quality Ge/Al/Glass Structure. J. Electron. Mater. 44, 1377–1381 (2015). https://doi.org/10.1007/s11664-014-3521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3521-7

Keywords

Navigation