Skip to main content
Log in

Optimization of Inkjet-Printed 6,13-Bis(triisopropylsilylethynyl) pentacene Using Photolithography-Defined Structures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the performance of inkjet-printed 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)-based organic thin-film transistors (OTFTs) was studied under various printing conditions using photolithography-defined test structures. OTFTs were printed from TIPS-pentacene solutions with several concentrations, and the impact of printing temperature as well as the amount of material printed was studied. A hybrid approach that includes wells defined by a photolithography process and printed TIPS solution is demonstrated. The results show that the mobility of the printed OTFTs increases with increasing solution concentration, with a maximum mobility for concentration of 50 mg/mL and substrate temperature of 50°C. X-ray diffraction analysis showed the presence of the thin-film phase for all of the TIPS concentrations, with strong and sharp preferential orientation along the (001) direction without any disruption in molecular packing with increasing TIPS thickness. Optimized OTFTs fabricated with this technique show mobilities of 5 × 10−2 cm2/V-s, threshold voltages (V T) in the range of −5 V, and subthreshold slopes of approximately 0.5 V/dec. On–off current ratios up to 106 were also achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.K.C. Kjellander, W.T.T. Smaal, J.E. Anthony, and G.H. Gelinck, Adv. Mater. 22, 4612 (2010).

    Article  Google Scholar 

  2. S.H. Lee, M.H. Choi, S.H. Han, D.J. Choo, J. Jang, and S.K. Kwon, Org. Electron. 9, 721 (2008).

    Article  Google Scholar 

  3. Y.H. Kim, J.H. Lee, M.K. Han, and J. Han, Proceedings of 9th Asian Symposium on Information Display (2006), p. 430.

  4. B. Gans, P.C. Duineveld, and U.S. Schubert, Adv. Mater. 16, 203 (2004).

    Article  Google Scholar 

  5. S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J. Frechet, and D. Poulikakos, Nanotechnology 18, 345202 (2007).

    Article  Google Scholar 

  6. T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, T. Someya, and P. Natl, Acad. Sci. USA 105, 4976 (2008).

    Article  Google Scholar 

  7. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, J. Appl. Phys. 92, 5259 (2002).

    Article  Google Scholar 

  8. T. Okamoto, M.L. Senatore, M. Ling, A.B. Mallik, M.L. Tang, and Z. Bao, Adv. Mater. 19, 3381 (2007).

    Article  Google Scholar 

  9. B.S. Ong, Y. Wu, P. Liu, and S. Gardner, J. Am. Chem. Soc. 126, 3378 (2004).

    Article  Google Scholar 

  10. S.K. Park, T.N. Jackson, J.E. Anthony, and D.A. Mourey, Appl. Phys. Lett. 91, 063514 (2007).

    Article  Google Scholar 

  11. K.N. Choi, K.S. Kim, K.S. Chung, and H. Lee, IEEE Trans. Device. Mater. Reliab. 9, 489 (2009).

    Article  Google Scholar 

  12. S.K. Park, J.E. Anthony, and T.N. Jackson, IEEE Electron Device Lett. 28, 877 (2007).

    Article  Google Scholar 

  13. S. Shin, J. Kwon, H. Kang, and B. Ju, Semicond. Sci. Technol. 23, 085009 (2008).

    Article  Google Scholar 

  14. S.K. Park, Y.H. Kim, and J. Han, Org. Electron. 10, 1102 (2009).

    Article  Google Scholar 

  15. M.H. Choi, S.H. Han, S.H. Lee, D.J. Choo, J. Jang, and S.K. Kwon, Org. Electron. 10, 421 (2009).

    Article  Google Scholar 

  16. D. Boudinet, M. Benwadih, Y. Qi, S. Altazin, J. Verilhac, M. Kroger, C. Serbutoviez, R. Coppard, G. Blevennec, A. Kahn, and G. Horowitz, Org. Electron. 11, 227 (2010).

    Article  Google Scholar 

  17. S. Gowrisanker, Y. Ai, M.A. Quevedo-Lopez, H. Jia, E. Vogel, and B. Gnade, Flexible Electronics and Displays Conference and Exhibition (2008), doi:10.1109/FEDC. 2008.4483882.

  18. J. Chang, B. Sun, D.W. Breiby, M.M. Nielsen, T.I. Solling, M. Giles, I. McCulloch, and H. Sirringhaus, Chem. Mater. 16, 4772 (2004).

    Article  Google Scholar 

  19. D.K. Hwang, C.F. Hernandez, J.D. Berrigan, Y. Fang, J. Kim, W.J. Potscavage, H. Cheun, K.H. Sandhage, and B. Kippelen, J. Mater. Chem. 22, 5531 (2012).

    Article  Google Scholar 

  20. R. Srnanek, J. Kovac, J. Jakabovic, J. Kovac Jr., G. Irmer, E. Dobrocka, and D. Hasko, The 7th International Conference on Advanced Semiconductor Devices and Microsystems (2008), p. 255. doi:10.1109/ASDAM.2008. 4743331.

  21. A.L. Patterson, Phys. Rev. 56, 978 (1939).

    Article  Google Scholar 

  22. P.V. Necliudov, M.S. Shur, D.J. Gundlach, and T.N. Jackson, International Symposium on Semiconductor Device Research (2001), p. 345. doi:10.1109/ISDRS.2001.984512.

  23. J. Choi, Y. Seo, W. Lee, and J. Jung, Curr. Appl. Phys. 13, 1275 (2013).

    Article  Google Scholar 

  24. J. Jang, Y. Yoon, H. Jeong, H. Lee, Y. Song, K. Cho, S. Hong, H. Lee, and T. Lee, Thin Solid Films 542, 327 (2013).

    Article  Google Scholar 

  25. A. Valletta, A. Daami, M. Benwadih, R. Coppard, G. Fortunato, M. Rapisarda, F. Torricelli, and L. Mariucci, Appl. Phys. Lett. 99, 233309 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Quevedo-Lopez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, D.L., Mejia, I., Perez, M.R. et al. Optimization of Inkjet-Printed 6,13-Bis(triisopropylsilylethynyl) pentacene Using Photolithography-Defined Structures. J. Electron. Mater. 44, 490–496 (2015). https://doi.org/10.1007/s11664-014-3427-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3427-4

Keywords

Navigation