Skip to main content
Log in

Study of Shallow Backside Junctions for Backside Illumination of CMOS Image Sensors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Backside illumination complementary metal oxide semiconductor image sensors (BSI CISs) represent an advanced technology that produces high-quality image sensors. However, BSI CISs are limited by high dark signals and noise signals on the backside. To address these problems, backside junctions are commonly used. High-dose backside junctions effectively reduce dark signals and noise signals. The depth of the implantation profile is a key factor in determining the junction depth. A laser thermal annealing process is conducted only near the surface to the activation, and thus broader doping profiles are limitations to be activation of dopants. Changing the dopant from B to BF2 can decrease the implant projected range. However, there are abnormal activation rates for BF2 in applications involving laser thermal annealing processes for shallow junctions. Although the need for BF2 is increasing, a mechanism for its slow activation and low activation rates has not yet been confirmed. Here, we identify the mechanism by which BF2 undergoes low activation after a melting threshold temperature and explain why this phenomenon occurs. In addition, we confirm a condition that provides high activation rates of BF2 and show the reduction of dark signals and noise signals at the high density BSI CISs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.W. White, W.H. Christie, B.R. Appleton, S.R. Wilson, P.P. Pronko, and C.W. Magee, Appl. Phys. Lett. 33, 662 (1978).

    Article  Google Scholar 

  2. J. Narayan, O.W. Holland, C.W. White, and R.T. Young, J.␣Appl. Phys. 55, 1125 (1984).

    Article  Google Scholar 

  3. Z.A.F. Ali-Guerry, D. Dutartre, R. Beneyton, P. Normandon, and G.N. Lu, Sens. Lett. 9, 2137 (2011).

    Article  Google Scholar 

  4. W.W. Luo, S.Z. Yang, P. Clancy, and M.O. Thompson, J.␣Appl. Phys. 90, 2262 (2001).

    Article  Google Scholar 

  5. M.L. Geyselaers, J. Haisma, F.P. Widdershoven, T.M. Michielsen, and A.H. Reader, Appl. Phys. Lett. 54, 1311 (1989).

    Article  Google Scholar 

  6. J.H. Park, Y.J. Huh, and H.S. Hwang, Appl. Phys. Lett. 74, 1248 (1999).

    Article  Google Scholar 

  7. E.V. Monakhov, B.G. Svensson, M.K. Linnarsson, A. La Magna, M. Italia, V. Privitera, G. Fortunato, M. Cuscuna, and L. Mariucci, Mater. Sci. Eng. B: Solid State Mater. Adv. Technol. 124, 232 (2005).

    Article  Google Scholar 

  8. K. Huet, C. Boniface, J. Venturini, Z.A.F. Ali-Guerry, R. Beneyton, M. Marty, D. Dutartre, and F. Roy, 18th International Conference on Advanced Thermal Processing of Semiconductor (RTP), ISSN 1944-0251 (2010), pp. 50–52.

  9. D. Hobbs, G. Kresse, and J. Hafner, Phys. Rev. B 62, 11556 (2000).

    Article  Google Scholar 

  10. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  11. J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 122, 234102 (2005).

    Article  Google Scholar 

  12. SMIA, SMIA 1.0 Part 5: Carmera Characterization Specification Rev A (2004).

  13. H.C. Cheng, F.S. Wang, Y.F. Huang, C.Y. Huang, and M.J. Tsai, J. Electrochem. Soc. 142, 3574 (1995).

    Article  Google Scholar 

  14. M.O. Thompson, G.J. Galvin, and J.W. Mayer, Phys. Rev. Lett. 52, 2360 (1984).

    Article  Google Scholar 

  15. K. Hanamoto, H. Yoshimoto, T. Hosono, A. Hirai, Y. Kido, Y. Nakayama, and R. Kaigawa, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 140, 124 (1998).

    Article  Google Scholar 

  16. J. Wu, Y.L. Wang, C.P. Liu, S.C. Chang, C.T. Kuo, and C. Ay, Thin Solid Films 447, 599 (2004).

    Article  Google Scholar 

  17. K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, C.H. Tung, L.J. Tang, and Y.F. Chong, Appl. Phys. Lett. 89, 122113 (2006).

    Article  Google Scholar 

  18. R.C. Westhoff, B.E. Burke, H.R. Clack, A.H. Loomis, D.J. Young, J.A. Gregory, and R.K. Reich, Proceedings of the SPIE, Sensors, Cameras, and Systems for Industrial/Scientific Application X Conference (San Jose, CA: Convention Center, 2009), vol. 7249, pp. 724900J1–724900J11.

Download references

Acknowledgement

This work was supported in part by National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (2011-0028612) NRL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuck Mo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, C.S., Yeo, S.C., Kim, D. et al. Study of Shallow Backside Junctions for Backside Illumination of CMOS Image Sensors. J. Electron. Mater. 43, 3933–3941 (2014). https://doi.org/10.1007/s11664-014-3336-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3336-6

Keywords

Navigation